当前课程知识点:Linear Algebra with Applications > Chapter 1 - Matrices and Systems of Equations > 1.4 Elementary matrices > 1.4-2 Equivalent Systems and Equivalent Conditions
返回《Linear Algebra with Applications》慕课在线视频课程列表
返回《Linear Algebra with Applications》慕课在线视频列表
-1.1 Systems of Linear Equations
--1.1-1 The Form, Solution and 2-by-2 System
-1.2 Row Echelon Form
--1.2-1 Row Echelon Form and Gaussian Elimination
--1.2-2 Overdetermined System and Undetermined System
--1.2-3 Reduced Row Echelon Form
-1.3 Matrix Algebra
--1.3-1 Matrix Notation, Vectors and Equality
--1.3-2 Matrix Addition, Scalar Multiplication, Matrix Multiplication and Linear System
--1.3-3 Transpose of a Matrix, and Symmetric Matrix
--1.3-5 Identity Matrix, and Inverse Matrix
-1.4 Elementary matrices
--1.4-1 Equivalent Systems and Elementary Matrices
--1.4-2 Equivalent Systems and Equivalent Conditions
--1.4-3 Triangular Factorization
-1.5 Partitioned Matrices
-Homewrok 1
-Test 1
-2.1 Determinant
--2.1-2 Determinants and Properties
-2.2 Properties of Determinant
--2.2-2 Determinants and Properties
--2.2-3 Singularity and Determinant
-2.3 Additional Topics and Applications
--2.3-1 The Adjoint of a Matrix
--2.3-2 Cramer’s Rule and Cross Product
-Homework 2
-Test 2
-3.1 Definition and Examples
--3.1-1 Simple Examples of Vector Spaces
--3.1-2 Vector Spaces, More Examples and Properties
-3.2 Subspaces
-3.3 Linear Independence
--3.3-2 Linear Independence and Dependence
--3.3-3 Linear Dependence and Singularity
--3.3-4 Linear Independence and Dependence in Pn and C(n-1)[a,b]
-3.4 Basis and Dimension
-3.5 Change of Basis
-3.6 Row Space and Column Space
-Homework 3
-Test 3
-4.1 Definition and Examples
--4.1-1 Definition and Simple Examples
-4.2 Matrix Representation of Linear Transformations
--4.2-1 Matrix Representation of L form Rn to Rm
--4.2-2 Matrix Representation of L from V to W
--4.2-3 Matrix Form of LA from Rn to Rm
-4.3 Similarity
--4.3-1 Matrix Representation of a Linear Operator
-Homework 4
-Test 4
-5.1 The Scalar Product in Rn
--5.1-1 The Scalar Product in R2 and R3
--5.1-2 Scalar and Vector Projections; Orthogonality in Rn
-5.2 Orthogonal Subspaces
--5.2-1 Orthogonal Subspaces; Orthogonal Complement
-5.3 Least Squares Problems
--5.3-1 Least Squares Solutions to Overdetermined Systems
-5.6 The Gram-Schimidt Orthogonalization Process
--5.6-2 The Gram-Schimidt Orthogonalization Process
--5.6-3 The Gram-Schimidt QR Factorization
-Homewrok 5
-Test 5
-6.1 Eigenvalues and Eigenvectors
--6.1-1 Definition and Calculation of Eigenvalues and Eigenvectors
--6.1-2 Product and Sum of Eigenvalues
-6.3 Diagonalization
--6.3-1 Diagonalizable Matrices
-6.6 Quadratic Forms
-6.7 Positive Definite Matrices
--6.7 Positive Definite Matrices
-Homework 6
-Test 6