This course "Linear Algebra with Applications" covers a comprehensive and systematic basic theory of linear algebra, and some practical applications in our social life and scientific research nowadays. The teacher has more than ten years of teaching experience of this course using English, and the members/assistant of our team also have rich teaching experience. Welcome to join our course "Linear Algebra with Applications" of Beijing Jiaotong University! Enjoy the beauty of Linear Algebra!
开设学校:北京交通大学;学科:理学、
This course "Linear Algebra with Applications" covers a comprehensive and systematic basic theory of linear algebra, and some practical applications in our social life and scientific research nowadays. The teacher has more than ten years of teaching experience of this course using English, and the members/assistant of our team also have rich teaching experience. Welcome to join our course "Linear Algebra with Applications" of Beijing Jiaotong University! Enjoy the beauty of Linear Algebra!
-1.1 Systems of Linear Equations
--1.1-1 The Form, Solution and 2-by-2 System
-1.2 Row Echelon Form
--1.2-1 Row Echelon Form and Gaussian Elimination
--1.2-2 Overdetermined System and Undetermined System
--1.2-3 Reduced Row Echelon Form
-1.3 Matrix Algebra
--1.3-1 Matrix Notation, Vectors and Equality
--1.3-2 Matrix Addition, Scalar Multiplication, Matrix Multiplication and Linear System
--1.3-3 Transpose of a Matrix, and Symmetric Matrix
--1.3-5 Identity Matrix, and Inverse Matrix
-1.4 Elementary matrices
--1.4-1 Equivalent Systems and Elementary Matrices
--1.4-2 Equivalent Systems and Equivalent Conditions
--1.4-3 Triangular Factorization
-1.5 Partitioned Matrices
-Homewrok 1
-Test 1
-2.1 Determinant
--2.1-2 Determinants and Properties
-2.2 Properties of Determinant
--2.2-2 Determinants and Properties
--2.2-3 Singularity and Determinant
-2.3 Additional Topics and Applications
--2.3-1 The Adjoint of a Matrix
--2.3-2 Cramer’s Rule and Cross Product
-Homework 2
-Test 2
-3.1 Definition and Examples
--3.1-1 Simple Examples of Vector Spaces
--3.1-2 Vector Spaces, More Examples and Properties
-3.2 Subspaces
-3.3 Linear Independence
--3.3-2 Linear Independence and Dependence
--3.3-3 Linear Dependence and Singularity
--3.3-4 Linear Independence and Dependence in Pn and C(n-1)[a,b]
-3.4 Basis and Dimension
-3.5 Change of Basis
-3.6 Row Space and Column Space
-Homework 3
-Test 3
-4.1 Definition and Examples
--4.1-1 Definition and Simple Examples
-4.2 Matrix Representation of Linear Transformations
--4.2-1 Matrix Representation of L form Rn to Rm
--4.2-2 Matrix Representation of L from V to W
--4.2-3 Matrix Form of LA from Rn to Rm
-4.3 Similarity
--4.3-1 Matrix Representation of a Linear Operator
-Homework 4
-Test 4
-5.1 The Scalar Product in Rn
--5.1-1 The Scalar Product in R2 and R3
--5.1-2 Scalar and Vector Projections; Orthogonality in Rn
-5.2 Orthogonal Subspaces
--5.2-1 Orthogonal Subspaces; Orthogonal Complement
-5.3 Least Squares Problems
--5.3-1 Least Squares Solutions to Overdetermined Systems
-5.6 The Gram-Schimidt Orthogonalization Process
--5.6-2 The Gram-Schimidt Orthogonalization Process
--5.6-3 The Gram-Schimidt QR Factorization
-Homewrok 5
-Test 5
-6.1 Eigenvalues and Eigenvectors
--6.1-1 Definition and Calculation of Eigenvalues and Eigenvectors
--6.1-2 Product and Sum of Eigenvalues
-6.3 Diagonalization
--6.3-1 Diagonalizable Matrices
-6.6 Quadratic Forms
-6.7 Positive Definite Matrices
--6.7 Positive Definite Matrices
-Homework 6
-Test 6
张超 北京交通大学理学院数学系 教授 专业: 最优化理论、算法及应用 教育背景: 1997-2001, 青岛大学师范学院, 学士学位 2001-2004, 北京交通大学, 硕士学位 2004-2008, 日本弘前大学, 博士学位 2018-2019, 美国加州大学戴维斯分校, 访问学者 教授课程: 线性代数--中文授课 (2008-2009) 线性代数-- 全英文授课 (11年, 从 2010 - 至今) 优化方法 -- 中文授课 (从 2008 - 至今) 优化原理 -- 全英文授课 (2017,2018, 2020) 发表文章: X. Chen, C. Zhang, and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Math. Program. 117 (2009), 51-80. C. Zhang and X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optim. 20 (2009), 627-649. C. Zhang and X. Chen, A smoothing active set method for linearly constrained non-Lipschitz nonconvex optimization, SIAM J. Optim. 30 (2020), 1-30. C. Zhang, X. Chen, and A. Sumalee, Wardrop’s user equilibrium assignment under stochastic environment, Transport. Res. B- Meth. 45 (2011) , 534-552. X. Chen, M. K. Ng, and C. Zhang, Non-Lipschitz lp-regularization and box constrained model for image restoration, IEEE Trans. Image Process. 21 (2012), 4709-4721. L. P. Jing, C. Zhang, and M. K. Ng, SNMFCA: Supervised NMF-based image classification and annotation, IEEE Trans. Image Process. 21 (2012), 4508-4521. C. Zhang, L. P. Jing, and N. Xiu, A new active set method for nonnegative matrix factorization, SIAM J. Sci. Comput. 36 (2014), A2633-A2653. R. Wang, N. Xiu, and C. Zhang, Greedy projected gradient-Newton method for large scale sparse logistic regression, IEEE Trans. Neural Learn Syst. 31 (2020), 527-538.