当前课程知识点:采油工程 >  第三章 井筒举升能力 >  3.2 垂直管流计算方法 >  3.2.3 奥氏方法压降计算

返回《采油工程》慕课在线视频课程列表

3.2.3 奥氏方法压降计算在线视频

3.2.3 奥氏方法压降计算

下一节:3.3 举升能力与 VLP 曲线

返回《采油工程》慕课在线视频列表

3.2.3 奥氏方法压降计算课程教案、知识点、字幕

同学们好

本节我们学习奥氏方法压降计算

我们先看一下压力降的计算公式

压力降由摩擦能量损失 势能变化

和动能变化加起来组成的

也就是由摩擦项 重力项 以及动能项组成

而奥氏方法它认为动能项只有在雾流条件之下

这一项才会有明显的变化

而雾流状态的时候 气相和液相是同样的速度

也就是雾流的时候

混合物的流速跟气相的流速是相等的

同时 雾流条件近似于等温膨胀

等温膨胀情况之下

压力乘以它的流动速度是一个常数

如果p乘以vsg等于常数

对它求一个微分

可以得到相对应的两个变量的复合函数的求导

基于这样的一些形式

可以将这个公式展开成如下的这种形式

从而奥氏方法就得到了压降具体的计算公式

那么在这个计算公式当中

我们发现混合物的密度 以及摩擦梯度

是需要确定的最关键的量

而混合物的密度和摩擦压力梯度

都是跟流型相关的 需要针对不同的流型

来解决这两个参数它的计算方法

首先我们先看一下泡流

泡流的混合密度

可以采取含气率加权平均的方式

也就是根据含气率来得到液相气相加权平均

得到它的平均密度

为什么可以这么用

原因是泡流 液相是连续相

气泡以分散的形式存在于液相当中

如果知道了含气率 我们就可以采用

这样的公式计算出泡流的平均密度

我们知道气相和液相含率加起来是等于1的

那么对于泡流来讲

唯一的一个需要我们注意的问题就是滑脱现象

因为滑脱的问题导致了在截面上

气相液相的比例与整个体积内的体积流量

是不成正比 因此我们可以写出滑脱速度

应该是真实的气相速度减掉真实的液相速度

这个地方用了表观流速比上含气率

就是真实的流速

而液相同样的表观流速比上持液率

也能够得到真实流速

整理一下之后 我们就可以得到

以气相和液相体积流量以及管段的截面积

来计算的滑脱速度

这里面出现了我们关心的气相的含气率

换一种写法 我们将气相的含气率

可以把它表达成滑脱速度的形式

也就是在这个式子当中

如果我们知道了滑脱速度的话

就可以计算出它所对应的含气率

而对于泡流来说

通过大量的实验观察

我们发现泡流的滑脱速度是一个相对稳定的值

是多少呢 0.244米/秒

对于这样的一个固定的滑脱速度

我们把它代入到这个公式里面

就得到了所对应的气相的含气率

而知道了含气率

我们就可以去计算泡流的混合物密度了

对于泡流的摩擦梯度

它的计算里面要用到vl液相的流速

要用到摩擦系数f

而摩擦系数

一般情况之下 我们可以采取莫迪图

通过查图来实现

也就是通过管壁的相对粗糙度 通过雷诺数

查图以后得到所对应的摩擦系数

这就是对泡流的时候摩擦梯度是这么来确定的

我们来看段塞流

段塞流动跟泡流是不一样的

它的这种不均匀的分布状态

决定了它的密度 它的摩擦梯度

都是不一样的计算方法

奥氏方法中 段塞流的混合物密度

是采用这个公式来计算的

这里面同样的要用到滑脱速度

要用到一个δ 就是液相的分布系数

这些是要在段塞流中要确定的量

同样的 摩擦梯度也有对应的计算公式

同样存在滑脱速度以及液相的分布系数

对于滑脱速度来说

泡流就不是简单的一个固定值0.244米/秒了

而是根据不同的流动的状态

这里面用到了Nb 就是泡流的雷诺数

根据它的不同

确定了段塞流动滑脱速度的计算式

同样的 对于液相的分布系数来说

也是用类似的处理的办法来实现

雾流 对于雾流的混合物密度

采取的是跟泡流类似的方式

为什么 原因就是雾流是气相为连续相

而液相为分散相的一种流动状态

混合物密度是可以采取这种

加权平均的方式实现的

前提是要知道含气率的多少

而雾流相对于泡流来说 它是没有滑脱的

我们认为雾流的气液没有相对的运动速度

所以说基本上是没有滑脱

没有滑脱的情况之下

我们就比较简单的可以采用气相和混合物

体积流量的比值来表达气相的含气率

同样的速度运行的 所以含气率的大小

就应该是体积流量的比值

所以说我们采用这样的一个办法

得到了含气率之后

就可以计算出混合物的密度了

同样的 对于摩擦梯度来说

我们也采取了类似的处理的办法

那么要注意的是 计算摩擦梯度的时候

我们要采取气相的雷诺数来计算

为什么 气相是连续相

我们要采取液膜的相对粗糙度

来查这个莫迪图

为什么 是因为雾流的情况之下

沿管壁是有一层液膜的

不能用管壁的相对粗糙度

而是要用液膜的相对粗糙度

这是摩擦梯度计算的时候要注意的问题

过渡流动

是介于雾流和段塞流之间的一种流动状态

那么奥氏方法在处理过渡流的时候

是采取了先按段塞流和雾流分别计算

然后再用内插法来确定的这样一种办法

也就是它没有专门提供过渡流的计算方法

而是用雾流和段塞流分别处理

然后再插值

这里面我们看混合物的密度是怎么插值的

分别的算了 按段塞流算 按雾流算

算了两个密度

插值是用了气相的无因次速度

跟LM和LS之间做插值

得到了过渡流的混合物密度

同样的处理办法 能够得到过渡流的摩擦梯度

那么以上就是介绍了奥氏方法中

针对四种不同的流型提出来的

关键的两个参数 混合物密度和摩擦梯度

它的计算方法

有了这些计算方法 我们就可以在整个的

井筒管段里面判断出当前管段下的流型

然后根据特定的流型去计算这种流型

对应的压力梯度

以上就是本节的主要内容

同学们再见

采油工程课程列表:

第一章 绪论

-1.1 采油工程的主要任务

--1.1 采油工程的主要任务

-1.2 油井生产系统中的流动

--1.2 油井生产系统中的流动

-课后习题--作业

第二章 油井流入动态

-2.1 油井流入动态曲线与油井产能

--2.1.1 单相液体流入动态

--2.1.2 油井产能与 IPR 曲线

-2.2 Vogel 方程及其应用

--2.2.1 Vogel 方程

--2.2.2 利用 Vogel 方法计算油井 IPR 曲线

--2.2.3 表皮系数与流动效率

--2.2.4 非完善井 Vogel 方法修正

--2.2.5 单相-两相共存流入动态

-课后习题--作业

第三章 井筒举升能力

-3.1 井筒气液两相流基本概念

--3.1.0 井筒多相流动概述

--3.1.1 垂直管流的流型

--3.1.2 滑脱现象

--3.1.3 流动特性参数

-3.2 垂直管流计算方法

--3.2.1 井筒压力梯度基本方程与计算

--3.2.2 奥氏方法流型判断

--3.2.3 奥氏方法压降计算

-3.3 举升能力与 VLP 曲线

--3.3 举升能力与 VLP 曲线

-课后习题--作业

第四章 节点系统分析方法

-4.1 节点分析方法

--4.1.1 什么是节点系统分析方法

--4.1.2 井底为求解点

--4.1.3 井口为求解点

-4.2 嘴流规律

--4.2.1 嘴流特性

--4.2.2 油嘴为求解点

-课后习题--作业

第五章 气举采油

-5.1 气举原理

--5.1.1 认识气举

--5.1.2 气举启动

-5.2 气举阀与气举管柱

--5.2.1 气举阀原理

--5.2.2 气举管柱

-5.3 气举设计

--5.3.1 定产量设计

--5.3.2 定注气量设计

--5.3.3 安装启动阀后的启动过程

--5.3.4 图示法启动阀设计

-课后习题--作业

第六章 有杆泵采油(一)

-6.1 抽油装置介绍

--6.1.1 抽油机

--6.1.2 抽油杆

--6.1.3 抽油泵

-S1 第二课堂 油田现场的抽油机

--1 实际抽油机介绍

--2 抽油机启动与停机操作

--3 抽油机冲程调节操作

--4 抽油机冲次调节操作

--5 油井井口采油树介绍

-6.2 泵的基本原理

--6.2.1 泵的抽汲过程

--6.2.2 泵的排量

-6.3 悬点运动规律

--6.3.1 悬点运动规律-简谐运动

--6.3.2 悬点运动规律-曲柄滑块运动

-6.4 悬点载荷计算

--6.4.1 静载荷

--6.4.2 动载荷

--6.4.3 悬点最大载荷与最小载荷

-课后习题--作业

第六章 有杆泵采油(二)

-6.5 抽油机平衡、扭矩与功率计算

--6.5.1 抽油机平衡

--6.5.2 平衡计算

--6.5.3 扭矩与扭矩因数

--6.5.4 扭矩曲线

--6.5.5 电动机选择与功率计算

-S2 第二课堂 抽油机平衡调节操作

--抽油机平衡操作

-6.6 泵效计算

--6.6.1 冲程损失

--6.6.2 气体对泵工作的影响

--6.6.3 提高泵效的措施

-6.7 有杆泵设计

--6.7.1 抽油杆柱强度计算及设计

--6.7.2 有杆泵抽油机生产系统设计

-6.8 有杆抽油系统工况分析

--6.8.1 抽油井液面测试与分析

--6.8.2 认识示功图

--6.8.3 典型功图分析

-S3 第二课堂 抽油机示功图测试

--抽油机示功图测试操作

-课后习题--作业

第七章 注水

-7.1 注水系统

--7.1.1 水源与水处理

--7.1.2 注水系统

-S4 第二课堂 油田注水系统介绍

--油田注水系统介绍

-7.2 吸水能力的分析

--7.2.1 注水井的吸水能力

--7.2.2 分层吸水能力测试方法

-7.3 分层注水管柱

--7.3 分层注水管柱

-7.4 注水指示曲线分析与应用

--7.4.1 注水指示曲线分析

--7.4.2 水嘴调配

-课后习题--作业

第八章 水力压裂技术(一)

-8.0 水力压裂概述

--8.0 水力压裂概述

-8.1 造缝机理

--8.1.1 基本岩石力学参数

--8.1.2 地应力

--8.1.3 井壁上的应力

--8.1.4 造缝条件

-课后习题--作业

第八章 水力压裂技术(二)

-8.2 压裂液

--8.2.1 认识压裂液

--8.2.2 压裂液滤失性

--8.2.3 压裂液流变性

-8.3 支撑剂

--8.3.1 认识支撑剂

--8.3.2 裂缝导流能力

--8.3.3 悬浮型支撑剂分布

--8.3.4 沉降型支撑剂分布

--8.3.5 支撑剂选择

-8.4 压裂设计

--8.4.1 压裂井增产幅度

--8.4.2 裂缝几何参数计算模型

--8.4.3 基本压裂设计过程

-课后习题--作业

第九章 酸处理技术

-9.0 酸处理概述

--9.0 酸处理概述

-9.1 碳酸盐储层盐酸处理

--9.1.1 碳酸盐储层酸化原理

--9.1.2 影响酸盐反应速度的因素

--9.1.3 酸化压裂基本概念

--9.1.4 酸液有效作用距离

--9.1.5 前置液酸压

-9.2 砂岩储层土酸处理

--9.2.1 砂岩储层酸化原理

--9.2.2 土酸处理设计

-9.3 酸处理工艺

--9.3.1 酸液及添加剂

--9.3.2 酸处理工艺

-课后习题--作业

期末考试

-期末考试

3.2.3 奥氏方法压降计算笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。