当前课程知识点:Finite Element Method (FEM) Analysis and Applications >  10、Basic properties in finite element method >  10.7 Accuracy and property of numerical solutions of finite element analysis >  Video 10.7

返回《Finite Element Method (FEM) Analysis and Applications》慕课在线视频课程列表

Video 10.7在线视频

下一节:Video 10.8

返回《Finite Element Method (FEM) Analysis and Applications》慕课在线视频列表

Video 10.7课程教案、知识点、字幕

我们先讨论一下有限元的求解精度问题

以平面问题为例,单元位移场可以展开为

如果单元的尺寸为h

也就是说上面这个式子里面Δx,Δy是h量级的

如果我们的位移场函数采用的是p阶完全多项式

那么它截断误差就是p+1

当然我们的Δx,Δy刚才提到了,它是h量级的

如果应变是位移的m阶导数

那么同样,要求m阶导数

所以它的误差阶次就要减一个m阶

而应变能是应变的平方项的表达

所以它误差的量级是

h的指数是2(p+1-m)

那么我们具体来用一下这个求解精度的估计

我们考虑一个两次网格划分的计算

假定第一次网格划分,我们网格尺寸是h

这个时候得到的结果是ui,这是第一次的

第二次我们进行网格的细分,细分的网格是细分一倍

也就是说网格的尺寸是h/2

这个时候得到的结果是ui,这个上面是2

假定准确解是ui

那么第一次得到的结果

也就是说有限元的结果减一个精确解

它的误差量级是h的p+1次

对于第二次也一样

由于这个时候是细分的,所以它的尺寸是h/2

同样它的阶次是p+1次

我们具体化

我们对一个平面3节点三角形单元

这个时候p=1,也就是取的完全的线性项

p+1=2

这样我们把刚才的估计式具体化

上面就得到了h的平方的量级的误差

下面是h/2的平方的量级的误差

我们大致估计一下,这两个一除

它就是4倍的关系

我们通过这个方程把ui解出来,它就等于

当然这只是一个初步的估计

真实的情况还非常复杂

因为它涉及到一些局部区域和整体区域的一些关系

也涉及到计算机的数值计算的误差

那么有限元分析是基于最小势能原理

我们看看,对象的总势能是可以表达成应变能减外力功

应变能是等于

由最小势能原理我们得到了刚度方程

我们考虑平衡时候的弹性系统的势能

我们把这个方程作一个代换

我们把刚才的刚度方程代到这里面来

然后前后两个一组合,我们就得到势能等于

这恰好就是等于负的应变能

也就是说等于负的U

它也等于-W/2,也就是说等于-1/2外力功

所以对于弹性问题来说

我们知道外力功,也知道应变能

就可以计算它的势能,互相是可以转换的

由最小势能原理的精确的解,或者精确的势能

它应该是最小的

所以我们把这个Πexact叫精确的势能,它是最小

所以我们近似的势能总是比它大

由刚才的势能公式,势能等于-U,也就是负的应变能

所以我们用应变能来表达就是

近似的应变能要小于精确的应变能

对于同一个问题

我们有近似的刚度矩阵,近似的位移

有精确的刚度矩阵,有精确的位移

因为在同一个问题中,载荷是一样的

我们来考查一下它们之间的关系

对于近似的,我们的应变能是按照这样来算的

对于精确的,也是按这样来算的

我们也知道,近似的要小于精确的应变能

我们把这两个公式代进来

再把刚才我们所得到的这一部分等于P代进去

这样我们就得到总体来说近似的位移

我们用模的方式来代表,它是小于精确的位移

所以我们有限元的解,它是近似的

它是具有下限性质

下限性质就是说它是偏小的

同样我们来看看

有限元模型Kq=P

实际上有限元它是用有限的节点和有限的单元

来逼近一个无限的自由度的对象

所以用有限的来逼近一个无限的

它总是使得刚度矩阵的数值变大了,也就是说变刚硬了

这样K就变大了

如果P外力不变

那这个时候q就要变小

刚才我们前面也分析了

我们用有限元算的位移值总体来说是偏小的

Finite Element Method (FEM) Analysis and Applications课程列表:

0、Course summary

-Finite element, infinite capabilities

--Video

1、Introduction

-1.1 Classification of mechanics:particle、rigid body、deformed body mechanics

--Video 1.1

--1.1 Test

-1.2 Main points for deformed body mechanics

--Video 1.2

--1.2 Test

-1.3 Methods to solve differential equation solving method

--Video 1.3

--1.3 Test

-1.4 Function approximation

--Video 1.4

--1.4 Test

-1.5 Function approximation defined on complex domains

--Video 1.5

--1.5 Test

-1.6 The core of finite element: subdomain function approximation for complex domains

--Video 1.6

--1.6 Test

-1.7 History and software of FEM development

--Video 1.7

--1.7 Test

-Discussion

--Discussion

-Homework

2、Finite element method of bar system based on direct stiffness method

-2.1 Principles of mechanic analysis of springs

--Video 2.1

--2.1 Test

-2.2 Comparison between spring element and bar element

--Video 2.2

--2.2 Test

-2.3 Coordinate transformation of bar element

--Video 2.3

--2.3 Test

-2.4 An example of a four-bar structure

--Video 2.4

--2.4 Test

-2.5 ANSYS case analysis of four-bar structure

--Video 2.5

--ANSYS

-Discussion

--Discussion

3、Mechanical description of deformed bodies with complex geometry 1

-3.1 Mechanical description and basic assumptions for deformed body

--Video 3.1

--3.1 Test

-3.2 Index notation

--Video 3.2

--3.2 Test

-3.3 Thoughts on three major variables and three major equations

--Video 3.3

--3.3 Test

-3.4 Test

-3.4 Construction of equilibrium Equation of Plane Problem

--Video 3.4

-3.5 Test

-3.5 Construction of strain-displacement relations for plane problems

--Video 3.5

-3.6 Test

-3.6 Construction of constitutive relations for plane problems

--Video 3.6

-3.7 Test

-3.7 Two kinds of boundary conditions

--Video 3.7

- Discussion

-- Discussion

4、Mechanical description of deformed bodies with complex geometry 2

-4.1 Test

-4.1 Discussion of several special cases

--Video 4.1

-4.2 Test

-4.2 A complete solution of a simple bar under uniaxial tension based on elastic mechanics

--Video 4.2

-4.3 Test

-4.3 The description and solution of plane beam under pure bending

--Video 4.3

-4.4 Test

-4.4 Complete description of 3D elastic problem

--Video 4.4

-4.5 Test

-4.5 Description and understanding of tensor

--Video 4.5

-Discussion

--Discussion

5、Principle of trial function method for solving mechanical equations of deformed body

-5.1 Test

-5.1Main method classification and trial function method for solving deformed body mechanics equation

--Video 5.1

-5.2 Test

-5.2 Trial function method for solving pure bending beam: residual value method

--Video 5.2

-5.3 Test

-5.3How to reduce the order of the derivative of trial function

--Video 5.3

-5.4 Test

-5.4 The principle of virtual work for solving plane bending beam

--Video 5.4

-5.5 Test

-5.5 The variational basis of the principle of minimum potential energy for solving the plane bending

--Video 5.5

-5.6 Test

-5.6 The general energy principle of elastic problem

--Video 5.6

-Discussion

--Discussion

6、Classic implementation and finite element implementation based on trial function method

-6.1Test

-6.1 Classic method and finite element method based on trial function

--Video 6.1

-6.2 Test

-6.2 Natural discretization and approximated discretization in finite element method

--Video 6.2

-6.3 Test

-6.3 Basic steps in the finite element method

--Video 6.3

-6.4 Test

-6.4 Comparison of classic method and finite element method

--VIDEO 6.4

-Discussion

--Discussion

7、Finite element analysis of bar and beam structures

-7.1 Test

-7.1 Construction and MATLAB programming of bar element in local coordinate system

--Video 7.1

-7.2 Test

-7.2 Construction and MATLAB programming of plane pure bending beam element in local coordinate syste

--Video 7.2

-7.3 Construction of three-dimensional beam element in local coordinate system

--Video 7.3

-7.4 Test

-7.4 Beam element coordinate transformation

--Video 7.4

-7.5 Test

-7.5 Treatment of distributed force

--Video 7.5

-7.6 Case Analysis and MATLAB programming of portal frame structure

--Video 7.6

-7.7 ANSYS case analysis of portal frame structure

--Video 7.7

8、Finite element analysis of continuum structure (1)

-8.1 Test

-8.1 Two-dimensional 3-node triangular element and MATLAB programming

--Video 8.1

-8.2 Test

-8.2 Two-dimensional 4-node rectangular element and MATLAB programming

--Video 8.2

-8.3 Test

-8.3 Axisymmetric element

--Video 8.3

-8.4 Test

-8.4 Treatment of distributed force

--Video 8.4

-8.5 MATLAB programming of 2D plane rectangular thin plate

--Video 8.5

-8.6 Finite element GUI operation and command flow of a plane rectangular thin plate on ANSYS softwar

--Video 8.6

-Discussion

--Discussion

9、Finite element analysis of continuum structure (2)

-9.1 Three-dimensional 4-node tetrahedral element and MATLAB programming

--Video 9.1

-9.2 Three-dimensional 8-node hexahedral element and MATLAB programming

--Video 9.2

-9.3 Principle of the isoparametric element

--Video 9.3

-9.4Test

-9.4Numerical integration

--Video 9.4

-9.5 MATLAB programming for typical 2D problems

--Video 9.5

-9.6 ANSYS analysis case of typical 3Dl problem

--Video 9.6

-Discussion

--Discussion

10、Basic properties in finite element method

-10.1Test

-10.1Node number and storage bandwidth

--Video 10.1

-10.2Test

-10.2 Properties of shape function matrix and stiffness matrix

--Video 10.2

-10.3Test

-10.3 Treatment of boundary conditions and calculation of reaction forces

--Video 10.3

-10.4Test

-10.4 Requirements for construction and convergence of displacement function

--Video 10.4

-10.5Test

-10.5C0 element and C1 element

--Video 10.5

-10.6 Test

-10.6 Patch test of element

--Video 10.6

-10.7 Test

-10.7 Accuracy and property of numerical solutions of finite element analysis

--Video 10.7

-10.8Test

-10.8 Error and average processing of element stress calculation result

--Video 10.8

-10.9 Test

-10.9 Error control and the accuracy improving method of h method and p method

--Video 10.9

-Discussion

--Discussion

11、High-order and complex element

-11.1 Test

-11.1 1D high-order element

--Video 11.1

-11.2 Test

-11.2 2D high-order element

--Video 11.2

-11.3 Test

-11.3 3D high-order element

--Video 11.3

-11.4 Test

-11.4 Bending plate element based on thin plate theory

--Video 11.4

-11.5 Test

-11.5 Sub-structure and super-element

--Video 11.5

12、Introduction to the application of finite element analysis (1)

-12.1Test

-12.1 Finite element analysis for structural vibration: basic principle

--Video 12.1

-12.2 Test

-12.2 Case of finite element analysis for structural vibration

--Video 12.2

-12.3 Test

-12.3 Finite element analysis for elastic-plastic problems: basic principle

--Video 12.3

-12.4 Test

-12.4 Finite element analysis for elastic-plastic problems: solving non-linear equations

--Video 12.4

-Discussion

--Discussion

13、Introduction to the application field of finite element analysis (2)

-13.1 Test

-13.1 Finite element analysis for heat transfer: basic principle

--Video 13.1

-13.2 Test

-13.2 Case of finite element analysis for heat transfer

--Video 13.2

-13.3 Test

-13.3 Finite element analysis for thermal stress problems: basic principle

--Video 13.3

-13.4 Test

-13.4 Finite element analysis for thermal stress problems: solving non-linear equation

--Video 13.4

-Discussion

--Discussion

14、Project

-2D problem: finite element analysis of a 2D perforated plate

--Video I-1

-3D problem: meshing control of a flower-shaped chuck

--Video I-2

-Modal analysis of vibration: Modal analysis of a cable-stayed bridge

--Video I-3

-Elastic-plastic analysis: elastic-plastic analysis of a thick-walled cylinder under internal pressur

--Video I-4

-Heat transfer analysis: transient problem of temperature field during steel cylinder cooling process

--Video I-5

-Thermal stress analysis: temperature and assembly stress analysis of truss structure

--Video I-6

-Probability of structure: Probabilistic design analysis of large hydraulic press frame

--Video I-7

-Modeling and application of methods: Modeling and analysis of p-type elements for plane problem

--Video I-8

Video 10.7笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。