当前课程知识点:Thermal Physics >  Week 11: Chapter 6 States and phase transitions >  6.3 Wetting and non-wetting and capillary phenomenon >  6.3-2Examples of Capillary Phenomenon and the Additional Pressure of the Curved Liquid Surface

返回《Thermal Physics》慕课在线视频课程列表

6.3-2Examples of Capillary Phenomenon and the Additional Pressure of the Curved Liquid Surface在线视频

下一节:6.4-1Gasification and Condensation 1

返回《Thermal Physics》慕课在线视频列表

Thermal Physics课程列表:

Week 1: Chapter 1 Introduction -- the macro part

-1.0 Introduction

--1.0General Introduction

--1.0General Introduction

-1.1 The macroscopic description method and the microscopic one

--1.1Macroscopic and microscopic description method

--1.1Macroscopic and microscopic description method

-1.2 Thermodynamic systems and equilibrium states

--1.2Thermodynamic systems and equilibrium states

--1.2Thermodynamic systems and equilibrium states

-1.3 Temperature, empirical temperature scale

--1.3Temperature, empirical thermometric scale

--1.3Temperature, empirical thermometric scale

-1.4 Absolute temperature scale

--1.4Absolute thermometric scale

--1.4Absolute thermometric scale

-1.5 Equation of state

--1.5-1Equation of state

--1.5-1Equation of state

--1.5-2Examples of an ideal gas equation

--1.5-2Examples of an ideal gas equation

-The thermometric scale and thermometers

-Homework of Chapter 1 Introduction -- the macro pa

Week 2: Chapter 1 Introduction -- the micro part

-1.6 A microscopic model of matter

--1.6-1Statistical average

--1.6-1Statistical average

--1.6-2A microscopic model of matter

--1.6-2A microscopic model of matter

-1.7 A microscopic model of an ideal gas

--1.7A microscopic model of the ideal gas

--1.7A microscopic model of the ideal gas

-1.8 A preliminary theory of microscopic description of an ideal gas

--1.8-1Preliminary theory of microscopic description of the ideal gases (1)

--1.8-1Preliminary theory of microscopic description of the ideal gases (1)

--1.8-2Preliminary theory of microscopic description of the ideal gases (2)

--1.8-2Preliminary theory of microscopic description of the ideal gases (2)

--1.8-3Preliminary theory of microscopic description of the ideal gases (3)

--1.8-3Preliminary theory of microscopic description of the ideal gases (3)

--1.8-4Examples of average translational kinetic energy and root-mean-square speed

--1.8-4Examples of average translational kinetic energy and root-mean-square speed

-1.9 The inter-molecular kinetic energy of real gas

--1.9Intermolecular forces and potential energy of real gas

--1.9Intermolecular forces and potential energy of real gas

-1.10 Van der Waals equation

--1.10Van der Waals equation

--1.10Van der Waals equation

-Equation of State

-Homework of Week 2: Chapter 1 Introduction -- the micro part

Week 3: Chapter 2 The equilibrium theory of gas dynamics -- Basis of probability theory and Maxwell

-2.1 Molecular dynamics theory and statistical Physics

--2.1Molecular dynamics theory and statistical physics

--2.1Molecular dynamics theory and statistical physics

-2.2 The basics of probability theory

--2.2The basics of probability theory

--2.2The basics of probability theory

-2.3 Probability distribution function

--2.3Probability distribution function

--2.3Probability distribution function

-2.4 Molecular beam experiments

--2.4Molecular beam experiments

--2.4Molecular beam experiments

-2.5 Velocity space

--2.5Velocity space

--2.5Velocity space

-2.6 Maxwell rate distribution

--2.6-1Maxwell speed distribution

--2.6-1Maxwell speed distribution

--2.6-2An example of the distribution of translational kinetic energy of molecules

--2.6-2An example of the distribution of translational kinetic energy of molecules

-2.7 Three typical averages of molecular rates

--2.7-1Three statistical averages of molecular speed

--2.7-1Three statistical averages of molecular speed

--2.7-2An example of molecular distribution

--2.7-2An example of molecular distribution

--2.7-3Examples of Maxwell speed distribution

--2.7-3Examples of Maxwell speed distribution

-Three typical statistical averages of speed

-Homework of Week 3: Basis of probability theory and Maxwell

Week 4: Chapter 2 Equilibrium state theory of gas dynamics -- Maxwell velocity distribution and Bol

-2.8 Maxwell velocity distribution

-- 2.8Maxwell velocity distribution

--2.8Maxwell velocity distribution

-2.9 Velocity component distribution and velocity distribution relative to the most probable rate

--2.9The velocity component and the speed distribution relative to the most probable speed

--2.9The velocity component and the speed distribution relative to the most probable speed

-2.10 The number of gas molecules hitting the wall from Maxwell velocity distribution and pressure fo

--2.10Deriving the formula for the wall-hitting number and pressure of gas molecules from Maxwell velo

--2.10Deriving the formula for the wall-hitting number and pressure of gas molecules from Maxwell velo

--2.10-2An example of a small hole discharge

--2.10-2An example of a small hole discharge

-2.11 Isothermal atmospheric pressure formula

--2.11Isothermal barometric formula

--2.11Isothermal barometric formula

--2.11-2Examples of an isothermal barometric formula

--2.11-2Examples of an isothermal barometric formula

-2.12 Boltzmann distribution

--2.12Boltzmann distribution

--2.12Boltzmann distribution

-2.13 The radial distribution of suspended particles in the rotating body and super-centrifugal techn

--2.13Radial distribution of suspended particles in a rotator and ultracentrifugation

--2.13Radial distribution of suspended particles in a rotator and ultracentrifugation

-Most probable velocity and most probable speed

-Homework of Week 4: Chapter 2 Equilibrium state theory of gas dynamics -- Maxwell velocity distribution and Bol

Week 5: Chapter 2 Equilibrium state theory of gas dynamics -- equipartition theorem

-2.14 Heat capacity and internal energy of a monatomic ideal gas

--2.14The heat capacity and internal energy of the monatomic ideal gas

--2.14The heat capacity and internal energy of the monatomic ideal gas

-2.15 Degrees of freedom and degrees of freedom

--2.15Degree of Freedom and the Number of It

--2.15Degree of Freedom and the Number of It

-2.16 Energy equipartition theorem

--2.16Theorem of equipartition of energy

--2.16Theorem of equipartition of energy

--2.16-2Examples of the Theorem of Equipartition of Energy

--2.16-2Examples of the Theorem of Equipartition of Energy

-2.17 Limitations of the equipartition theorem

--2.17The Limitation of the Theorem of Equipartition of Energy

--2.17The Limitation of the Theorem of Equipartition of Energy

-Equipartition theorem of energy

-Homework of Week 5 Equipartition theorem of energy

Week 6: Chapter 3 Non-equilibrium theory of gas dynamics

-3.1 Macroscopic law of viscosity phenomena

--3.1The macro law of the phenomenon of viscosity

--3.1The macro law of the phenomenon of viscosity

-3.2 Macroscopic law of heat conduction phenomenon

--3.2The macro law of thermal conduction phenomenon

--3.2The macro law of thermal conduction phenomenon

-3.3 Macroscopic law of diffusion phenomenon

--3.3The macro law of diffusion phenomenon

--3.3The macro law of diffusion phenomenon

--3.3-2Examples of the macro law of gas transport phenomenon

--3.3-2Examples of the macro law of gas transport phenomenon

-3.4 The mean free path of a gas molecule

--3.4-1Mean free path of gas molecules

--3.4-1Mean free path of gas molecules

--3.4-2The mean free path examples of gas molecules

--3.4-2The mean free path examples of gas molecules

-3.5 The distribution of gas molecules in a free path

--3.5Distribution of gas molecules in free path

--3.5Distribution of gas molecules in free path

-3.6 Derivation of gas transport coefficient

--3.6-1Derivation of gas transport coefficient: viscosity coefficient of gas

--3.6-1Derivation of gas transport coefficient: viscosity coefficient of gas

--3.6-2Derivation of gas transport coefficient thermal conductivity coefficient of gas

--3.6-2Derivation of gas transport coefficient thermal conductivity coefficient of gas

--3.6-3Derivation of gas transport coefficient and diffusion coefficient of gas

--3.6-3Derivation of gas transport coefficient and diffusion coefficient of gas

-3.7 Thermal conductivity in rarefied gases

--3.7Heat conductivity in thin gas

--3.7Heat conductivity in thin gas

-Newton Law of viscosity

-Homework of Chapter 3

Week 7: Chapter 4 The first Law of thermodynamics -- reversible and irreversible processes, the fi

-4.1 Reversible and irreversible processes

--4.1Reversible and Irreversible Process

--4.1Reversible and Irreversible Process

-4.2 Work and heat

--4.2Work and Heat

--4.2Work and Heat

-4.3 The first law of thermodynamics

--4.3-1First Law of Thermodynamics

--4.3-1First Law of Thermodynamics

-4.4 The heat capacity and enthalpy

--4.4Heat capacity and enthalpy

--4.4Heat capacity and enthalpy

-4.5 Internal energy of ideal gases and Joule experiment

--4.5Internal energy of the ideal gas and Joule experiment

--4.5Internal energy of the ideal gas and Joule experiment

-4.6 The same-body, isobaric, and isothermal processes of an

--4.6-1Isochoric, Isobaric and Isothermal Processes of the Ideal Gas

--4.6-1Isochoric, Isobaric and Isothermal Processes of the Ideal Gas

--4.6-2Examples of Isochoric, Isobaric and Isothermal Processes of the Ideal Gas

--4.6-2Examples of Isochoric, Isobaric and Isothermal Processes of the Ideal Gas

-Change in adiabatic free expansion temperature of a real gas

-Homework of Chapter 4 The first Law of thermodynamics

Week 8: Chapter 4 The first law of thermodynamics -- adiabatic process, multiparty process, heat en

-4.7 The adiabatic process for an ideal gas

--4.7-1Adiabatic process of the ideal gas

--4.7-1Adiabatic process of the ideal gas

--4.7-2Examples of adiabatic process 1

--4.7-2Examples of adiabatic process 1

--4.7-3Examples of adiabatic process 2

--4.7-3Examples of adiabatic process 2

--4.7-4Examples of adiabatic process 3

--4.7-4Examples of adiabatic process 3

--4.7-5Example of the First Law of Thermodynamics

--4.7-5Example of the First Law of Thermodynamics

-4.8 The multiparty process for an ideal gas

--4.8-1The Ideal Gas Polytropic Process

--4.8-1The Ideal Gas Polytropic Process

--4.8-2Example of polytropic process

--4.8-2Example of polytropic process

--4.8-3Example of non-polytropic process

--4.8-3Example of non-polytropic process

-4.9 Heat engine

--4.9-1Heat engine, Carnot heat engine

--4.9-1Heat engine, Carnot heat engine

--4.9-2Examples of Heat Engine 1

--4.9-2Examples of Heat Engine 1

--4.9-3Examples of Heat Engine 2

--4.9-3Examples of Heat Engine 2

-4.10 Refrigeration cycle

--4.10-1Refrigeration cycle, Carnot refrigeration cycle

--4.10-1Refrigeration cycle, Carnot refrigeration cycle

--4.10-2Examples of Refrigerator

--4.10-2Examples of Refrigerator

-4.11 Joule-Thomson experiment (throttling)

--4.11Joule-Thomson effect

--4.11Joule-Thomson effect

-First Law of Thermodynamics

-Homework of Week 8

Week 9: Chapter 5 Entropy, the Second Law of thermodynamics -- Two statements, Carnot's Theorem, Cl

-5.1 Two statements and equivalence of the second law of thermodynamics

--5.1-1Two statements of the second law of thermodynamics and their equivalence

--5.1-1Two statements of the second law of thermodynamics and their equivalence

--5.1-2Examples of the second law of thermodynamics

--5.1-2Examples of the second law of thermodynamics

-5.2 Carnot theorem

--5.2-1Carnot theorem

--5.2-1Carnot theorem

--5.2-2Examples of Carnot theorem

--5.2-2Examples of Carnot theorem

-5.3 Clausius equation

--5.3Clausius equation

--5.3Clausius equation

-5.4 Clausius entropy and its calculation

--5.4Clausius entropy and its calculation

--5.4Clausius entropy and its calculation

-Quantum heat engine

-Homework of Week 9

Week 10: Chapter 5 Entropy, the second Law of thermodynamics——the principle of entropy increase, th

-5.5 Principle of entropy increase

--5.5Principle of entropy increase

--5.5Principle of entropy increase

-5.6 The mathematical expression of the second law of thermodynamics

--5.6A mathematical expression for the second law of thermodynamics

--5.6A mathematical expression for the second law of thermodynamics

-5.7 Statistical significance of the second Law of thermodynamics

--5.7Statistical significance of the second Law of thermodynamics

--5.7Statistical significance of the second Law of thermodynamics

-5.8 The microscopic meaning of entropy

--5.8The microscopic meaning of entropy

--5.8The microscopic meaning of entropy

-The Principle of entropy Increase

-Homework of Week 10

Week 11: Chapter 6 States and phase transitions

-6.1 Surface tension and surface energy

--6.1Surface Tension and Surface Energy

--6.1Surface Tension and Surface Energy

-6.2 Additional pressure at bending level

--6.2The Additional Pressure of the Curved Liquid Surface

--6.2The Additional Pressure of the Curved Liquid Surface

-6.3 Wetting and non-wetting and capillary phenomenon

--6.3-1Wetting and Nonwetting Capillary Phenomena

--6.3-1Wetting and Nonwetting Capillary Phenomena

--6.3-2Examples of Capillary Phenomenon and the Additional Pressure of the Curved Liquid Surface

--6.3-2Examples of Capillary Phenomenon and the Additional Pressure of the Curved Liquid Surface

-6.4 Gasification and condensation

--6.4-1Gasification and Condensation 1

--6.4-1Gasification and Condensation 1

--6.4-2Gasification and Condensation 2

--6.4-2Gasification and Condensation 2

--6.4-3Gasification and Condensation 3

--6.4-3Gasification and Condensation 3

-6.5 Real gas isotherm

--6.5Real Gas Isotherm

--6.5Real Gas Isotherm

-6.6 Van der Gas isotherm

--6.6Van der Waals Isotherm

--6.6Van der Waals Isotherm

-6.7 Solid liquid phase change, gas-solid phase change and phase diagram

--6.7Solid-liquid Phase Transition, Solid-gas Phase Transition and Phase Diagram

--6.7Solid-liquid Phase Transition, Solid-gas Phase Transition and Phase Diagram

-6.8 Clapeyron equation

--6.8-1Clapeyron's Equation

--6.8-1Clapeyron's Equation

--6.8-2The Examples of Clapeyron's Equation

--6.8-2The Examples of Clapeyron's Equation

-Solid-Liquid transition change of water

-Homework for week 11

Week 12: Examination

-Examination of Thermal Physics

6.3-2Examples of Capillary Phenomenon and the Additional Pressure of the Curved Liquid Surface笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。