当前课程知识点:人工智能原理 > Part V. Learning: Chapter 11. Paradigms in Machine Learning(第V部分 学习:第11章 机器学习的范型) > 11.5 Summary(小结) > html
机器学习的范式用于区分机器学习中不同的原型。一个学习范式就是刻画一种学习的原型,基于对学习的经验、或者与环境的交互。
对范式的类别进行研究的意义在于,为了使学习任务能够达到好的效果,会使你思考去选择一个合适的范式;反过来,了解了学习范式的类别之后,会加深对学习任务的理解。
这一章我们着重学习了三种代表性的范式:
- 有监督学习:是一种“样本学习(learning-by-examples)“的范式
- 无监督学习:是一种“自我学习(learning-by-itself)”的范式
- 强化学习:是一种“在线学习(online-learning)”的范式。
此外,还简单介绍了其它几种范式:
- Ensemble(集成式):将大量的弱学习器组成一个强学习器
- Learning to learn(学会学习):基于先前的经验学会自身的归纳性偏向。
- Transfer(迁移式):关注于已学习的知识并将其用于不同但相关的问题
- Adversarial learning(对抗式):以一种对抗性方式(即零和博弈)来生成满足某种分布的数据。
- Collaborative learning(协同式):以一种非对抗的协同方式(即双赢)来获取所期待的结果
-1.1 Overview of Artificial Intelligence (人工智能概述)
--Video
-1.2 Foundations of Artificial Intelligence(人工智能基础)
--Video
-1.3 History of Artificial Intelligence(人工智能历史)
--Video
-1.4 The State of Artificial Intelligence(人工智能现状)
--Video
-1.5 Summary (小结)
--html
-Part I. Basics: Chapter 1. Introduction
-2.1 Approaches for Artificial Intelligence(人工智能研究途径)
--Video
-2.2 Rational Agents (理性主体)
--Video
-2.3 Task Environments (任务环境)
--Video
-2.4 Intelligent Agent Structure (Agent的结构)
--Video
-2.5 Category of Intelligent Agents(Agent的分类)
--Video
-2.6 Summary(小结)
--html
-Part I. Basics: Chapter 2. Intelligent Agent
-3.1 Problem Solving Agents(问题求解Agent)
--Video
-3.2 Example Problems(问题实例)
--Video
-3.3 Searching for Solutions(通过搜索求解)
--Video
-3.4 Uninformed Search Strategies(无信息搜索策略)
--Video
--Video
--Video
--Video
--Video
--Video
-3.5 Informed Search Strategies(有信息搜索策略)
--Video
--Video
-3.6 Heuristic Functions(启发式函数)
--Video
-3.7 Summary(小结)
--html
-Part II. Searching: Chapter 3. Solving Problems by Search
-4.1 Overview(概述)
--Video
-4.2 Local Search Algorithms(局部搜索算法)
--Video
--Video
--Video
-4.3 Optimization and Evolutionary Algorithms (优化和进化算法)
--Video
-4.4 Swarm Intelligence and Optimization(群体智能和优化)
--Video
-4.5 Summary(小结)
--html
-Part II. Searching: Chapter 4. Local Search and Swarm Intelligence
-5.1 Games(博弈)
--Video
-5.2 Optimal Decisions in Games(博弈中的优化决策)
--Video
-5.3 Alpha-Beta Pruning(Alpha-Beta剪枝)
--Video
-5.4 Imperfect Real-time Decisions(不完美的实时决策)
--Video
-5.5 Stochastic Games(随机博弈)
--Video
-5.6 Monte-Carlo Methods(蒙特卡洛方法)
--Video
-5.7 Summary(小结)
--html
-Part II. Searching:
-6.1 Constraint Satisfaction Problems (约束满足问题)
--Video
-6.2 Constraint Propagation: Inference in CSPs(约束传播:CPS中的推理)
--Video
-6.3 Backtracking Search for CSPs(CPS的回溯搜索)
--Video
-6.4 Local Search for CSPs(CPS局部搜索)
--Video
-6.5 The Structure of Problems(问题的结构)
--Video
-6.6 Summary(小结)
--html
-Part II. Searching: Chapter 6. Constraint Satisfaction Problem
-7.1 Overview(概述)
--Video
-7.2 Knowledge Representation(知识表示)
--Video
-7.3 Representation using Logic(逻辑表示)
--Video
-7.4 Ontological Engineering(本体工程)
--Video
-7.5 Bayesian Networks(贝叶斯网络)
--Video
-7.6 Summary(小结)
--html
-Part III. Reasoning: Chapter 7. Reasoning by Knowledge
-8.1 Planning Problems(规划问题)
--Video
-8.2 Classic Planning(经典规划)
--Video
-8.3 Planning and Scheduling(规划与调度)
--Video
-8.4 Real-World Planning(现实世界规划)
--Video
-8.5 Decision-theoretic Planning(决策理论规划)
--Video
-8.6 Summary(小结)
--html
-Part IV. Planning: Chapter 8. Classic and Real-world Planning
-9.1 What is Machine Learning(什么是机器学习)
--Video
-9.2 History of Machine Learning(机器学习的历史)
--Video
-9.3 Why Different Perspectives(为什么需要不同的视角)
--Video
-9.4 Three Perspectives on Machine Learning(机器学习的三个视角)
--Video
-9.5 Applications and Terminologies(机器学习的应用及有关术语)
--Video
-9.6 Summary(小结)
--html
-Part V. Learning: Chapter 9. Perspectives about Machine Leaning
-10.1 Classification(分类)
--Video
-10.2 Regression(回归)
--Video
-10.3 Clustering(聚类)
--Video
-10.4 Ranking(排名)
--Video
-10.5 Dimensionality Reduction(降维)
--Video
-10.6 Summary(小结)
--html
-Part V. Learning: Chapter 10. Tasks in Machine Learning
-11.1 Supervised Learning Paradigm(有监督学习范式)
--Video
-11.2 Unsupervised Learning Paradigm(无监督学习范式)
--Video
-11.3 Reinforcement Learning Paradigm(强化学习范式)
--Video
-11.4 Other Learning Paradigms(其他学习范式)
--Video
-11.5 Summary(小结)
--html
-Part V. Learning: Chapter 11. Paradigms in Machine Learning
-12.1 Probabilistic Models(概率模型)
--Video
-12.2 Geometric Models(几何模型)
--Video
-12.3 Logical Models(逻辑模型)
--Video
-12.4 Networked Models(网络模型)
--Video
-12.5 Summary(小结)
--html
-Part V. Learning: Chapter 12. Models in Machine Learning