随着人工智能和大数据时代的到来,对运筹和优化的需求也愈加迫切。本课程将重点介绍最优化的基本理论及算法,并引入前沿科研课题,介绍优化方法如何应用于实际问题求解。对优化算法感兴趣的小伙伴们,快来加入吧!
开设学校:北京理工大学;学科:理学、
随着人工智能和大数据时代的到来,对运筹和优化的需求也愈加迫切。本课程将重点介绍最优化的基本理论及算法,并引入前沿科研课题,介绍优化方法如何应用于实际问题求解。对优化算法感兴趣的小伙伴们,快来加入吧!
-1.1 About optimization
-1.2 Classification of optimization
--1.2 Classification of optimization
-1.3 Preliminaries in convex analysis
--1.3 Preliminaries in convex analysis
-课件
-【作业须知】
-练习题
-2.1 What is a Solution?
-2.2 Optimality Conditions Ⅰ
-2.3 Optimality Conditions Ⅱ
-2.4 Line search strategy
-2.5 Search direction Ⅱ
-2.6 Convergence
-课件
-【作业须知】
-作业
-3.1 Exact Step Length
-3.2 The Wolfe conditions
-3.3 Inexact Line Search II
-3.4 Convergence of Line Search Methods
--3.4 Convergence of Line Search Methods
-3.5 Convergence Rate
-课件
-【作业须知】
-作业
-4.1 Main Idea of Trust Region Methods
--4.1 Main Idea of Trust Region Methods
-4.2 Trust-Region Algorithm
-4.3 Solving Subproblem
-4.4 Solving Subproblem II
-4.5 Convergence
-课件
-【作业须知】
-作业
-5.1 Conjugate direction method
--5.1 Conjugate direction method
-5.2 Property of conjugate direction method
--5.2 Property of conjugate direction method
-5.3 Conjugate gradient method
--5.3 Conjugate gradient method
-5.4 Rate of convergence
-5.5 Nonlinear conjugate gradient method
--5.5 Nonlinear conjugate gradient method
-5.6 Convergence of nonlinear conjugate gradient method
--5.6 Convergence of nonlinear conjugate gradient method
-课件
-【作业须知】
-作业
-6.1 Semismoothness
-6.2 Semismooth Newton's Method
-6.3 Support Vector Machine
-6.4 Semismooth Newtons' Method for SVM
--6.4 Semismooth Newtons' Method for SVM
-6.5 Exploring Sparsity in SVM
--6.5 Exploring Sparsity in SVM
-课件
-【作业须知】
-作业
-7.1 Local and Global Solutions
--7.1 Local and Global Solutions
-7.2 Examples One
-7.3 Examples Two and Three
-7.4 Constraint Qualifications
--7.4 Constraint Qualifications
-7.5 First-Order Optimality Conditions
--7.5 First-Order Optimality Conditions
-7.6 Second Order Necessary Condition
--7.6 Second Order Necessary Condition
-7.7 Second Order Sufficient Condition
--7.7 Second Order Sufficient Condition
-7.8 Duality
-课件
-【作业须知】
-作业
-8.1 KKT conditions
-8.2 An Example
-8.3 Dual Problem
-课件
-【作业须知】
-测试题
-9.1 Quadratic Penalty Method
--9.1 Quadratic Penalty Method
-9.2 Exact Penalty Function
-9.3 Augmented Lagrangian Method
--9.3 Augmented Lagrangian Method
-9.4 Quadratic Penalty Method for Hypergraph Matching
--9.4 Quadratic Penalty Method for Hypergraph Matching
-9.5 Quadratic Penalty Method for Hypergraph Matching: Ⅱ
--9.5 Quadratic Penalty Method for Hypergraph Matching: Ⅱ
-9.6 Augmented Lagrangian Method for SVM
--9.6 Augmented Lagrangian Method for SVM
-9.7 Augmented Lagrangian Method for SVM: Ⅱ
--9.7 Augmented Lagrangian Method for SVM: Ⅱ
-课件
-【作业须知】
-作业
李庆娜,博士,北京理工大学数学与统计学院副教授、博士生导师。主持国家自然科学基金青年、面上项目等. 现任中国运筹学会数学优化分会青年理事,北京运筹学会理事。作为一线教师承担北京理工大学的本科生及研究生的教育、教学工作。主要研究最优化理论与算法及在医疗、通信、人工智能领域的应用。著有《凸分析讲义》等教材及专著《多维标度方法》 。