当前课程知识点:组合数学 >  漫谈组合数学 >  暴力枚举和抽象转换 >  世界杯引出的问题

返回《组合数学》慕课在线视频课程列表

世界杯引出的问题在线视频

世界杯引出的问题

下一节:一一对应

返回《组合数学》慕课在线视频列表

世界杯引出的问题课程教案、知识点、字幕

这节课呢我和大家一起来分享一下

怎么才能学好组合数学

也就是说怎么才能做好数数这个问题

大家都知道数数最基本的思想

不就挨个挨个地数嘛

其实在计算机界有一个相对文雅的名字

叫做枚举 为了凸显它枚举的本质

实际上我们经常管它叫什么呢

叫做暴力枚举

从这个名字上就可以知道

这不是一个节能环保的手段

那么暴力枚举根本思想

就是把所有的可行解全部挨个数一遍

它在理论上是可以解决所有的计数问题的

既然说是理论上可行

实际上在现实中往往就不可行了

我们来看一个简单的例子

今年可是一个世界杯年呀

我想同学们都会遇到一个非常尴尬的问题

那么多场比赛 正好考试期间 怎么办呢

小组赛要么咱忍忍

复赛总得看吧 但是复赛一共多少场呢

我总得规划一下这个时间安排吧

那么我们看一下

其实我们先要数一数一共有多少场复赛

在世界杯中实际上只有16支球队

最终冲入了复赛

他们的规则是非常残酷的

单场淘汰赛 也就是说两个两个比

最终我们只有一支球队留下来了

直到决出冠军

在这个过程中我们到底要踢多少场比赛呢

如果同学们仔细想一想

不如完成一下下面的一道quiz吧

组合数学课程列表:

漫谈组合数学

-什么是组合数学

--什么是组合数学

--讨论题

-最精巧的排列——幻方

--幻方

-漫谈组合数学--最精巧的排列——幻方

-苦难的羊皮纸卷

--羊皮纸卷

-苦难的羊皮纸卷--作业

-你的手机密码安全吗

--你的手机密码安全吗

-漫谈组合数学--你的手机密码安全吗

-暴力枚举和抽象转换

--世界杯引出的问题

--世界杯引出的问题--练习

--一一对应

--七桥问题

--小结

--讨论题

-大家谈组合数学(1)

--采访武永卫老师

-第一周作业

--作业说明

--H

--U

--G

--作业讨论区说明

-第一周演示程序

--程序讨论区说明

--幻方生成器

--换方计数

--屏幕解锁方案数

--欧拉路计数

--共享程序

小乒乓球的组合之旅

-加减乘除来计数

--计数的基本法则

-排列还是组合

--排列还是组合

--小乒乓球的组合之旅--排列还是组合

--格路模型与组合恒等式

-各种各样的排列

--圆排列和项链排列

--圆排列和项链排列--习题

--多重排列

--多重排列--练习

-多样的组合

--可重组合

--不相邻组合

--小乒乓球的组合之旅--多样的组合

-钟声里的全排列

--钟声里的全排列

--钟声里的全排列

--字典序法

--SJT算法

--程序支持与Stirling公式

-第二周作业

--H

--U

--G

--思考题

--公式测试

--作业讨论区说明

-第二周演示程序

--程序讨论区说明

--排列数和组合数的计算

--全排列生成

--组合生成器

--共享程序

-参考资料:Stirling估计式

--Stirling估计式

初识母函数

-母函数是函数的母亲吗

--母函数的定义(1)

--母函数的定义(1)--练习

--母函数的定义(2)

--母函数的定义(2)--练习

-母函数的简单应用

--母函数的简单应用(1)

--母函数的简单应用(2)

--初识母函数--母函数的简单应用

-整数拆分

--整数拆分(1)

--整数拆分(2)

-Ferrers图像

--Ferrers图像

--Ferrers图像--作业

-母函数与递推关系

--母函数能做什么

--Hanoi问题(1)

--Hanoi问题(2)

--偶数个5怎样算

--偶数个5怎样算(2)

--母函数小结

-大家谈组合数学(2)

--科研,找工作与组合数学

-第三周作业

--H

--U

--G

--思考题

--作业讨论区说明

-第三周演示程序

--程序讨论区说明

--整数拆分

--汉诺塔

--共享程序说明

线性常系数递推关系

-Fibonacci数列

--Fibonacci兔子

--Fibonacci恒等式

--线性常系数递推关系--Fibonacci数列

-Fibonacci数列的应用

--桌布魔术

--桌布魔术--练习

--Fibonacci的直接表达式

--Fibonacci优选法

--艾略特波浪曲线

-线性常系数齐次递推关系

--定义

--特征多项式

--母函数与特征多项式

--根据特征多项式求解递推关系通解(1)

--根据特征多项式求解递推关系通解(2)

--线性常系数递推关系--线性常系数齐次递推关系

-说“数”解题

--说“数”解题(1)

--说“数”解题(2)

-第四周作业

--H

--U

--G

--GT思考题

--作业讨论区说明

-第四周演示程序

--程序讨论区说明

--Fibonacci优选法

--Fibonacci数值计算

--程序共享说明

-爆笑花絮

--爆笑花絮

-参考资料:K线分析中的Fibonacci 相关理论

--Fibonacci retracement资料

神奇的序列

-Catalan数

--计算机界的精灵

--Catalan数的直接表达式

--Catalan数的各种实例

--神奇的序列--Catalan数

-指数型母函数

--指数型母函数

--指数型母函数的应用

--神奇的序列--指数型母函数

-错排

--错排1

--错排2

--神奇的序列--错排

-Stirling数

--第一类Stirling数

--神奇的序列--Stirling数

--第二类Stirling数

-母函数小结

--母函数小结

-大家谈组合数学(3)

--采访郭家宝(BYVoid)

-第五周作业

--H

--U

--G

--思考题

--作业讨论区说明

-第五周演示程序

--讨论区说明

--Catalan数

--第二类Stirling数

--程序共享

容斥原理和鸽巢原理

-且容且斥

--容斥原理

--容斥原理的证明

--容斥原理和鸽巢原理--且容且斥

-容斥原理的精妙

--容斥原理的应用(1)

--容斥原理的应用(2)

--容斥原理的应用(3)

-回忆过去,容斥新解

--容斥原理的应用(4)

--容斥原理的应用(5)

--容斥原理的应用(6)

--容斥原理和鸽巢原理--回忆过去,容斥新解

-鸽子抢巢

--鸽巢原理

--鸽巢原理--练习

--鸽巢原理的应用(1)

--鸽巢原理的应用(1)--练习

-看得见摸得着的鸽巢

--鸽巢原理的应用(2)

--韩信点兵

--中国剩余定理

--容斥原理和鸽巢原理--看得见摸得着的鸽巢

-6人行和Ramsey数

--6人行

--Ramsey数

--小结

-第六周作业

--H

--U

--G

--GT

--作业讨论区说明

-第六周演示程序

--讨论区说明

--Find a multiple

--程序共享说明

-可以转的世界

--可以转的世界

--可以转的世界--练习

--伽罗华与群

--群的定义

--群的定义--练习

--群的一些概念

-置换群

--置换群

--群--置换群

--共轭类

--对换

--对换--练习

--置换群的应用

-Burnside引理

--着色问题的等价类

--Burnside引理--作业

--Burnside引理

--Burnside引理的应用

-闲话群

--无处不在的群(1)

--无处不在的群(2)

-第七周作业

--H

--U

--G

--作业讨论区说明

Polya定理

-Burnside引理的困境

--Burnside引理的困境(1)

--Burnside引理的困境(2)

-从Burnside到Polya

--Polya定理

--Polya定理的应用(1)

--Polya定理的应用(2)

-立方体旋转

--立方体旋转(1)

--立方体旋转(2)

--立方体旋转--作业

--立方体旋转(3)

--立方体旋转--作业

--立方体旋转(4)

-母函数型Polya定理

--母函数型Polya定理(1)

--母函数型Polya定理(2)

--母函数型Polya定理(3)

--母函数型Polya定理(4)

--Polya定理--母函数型Polya定理

-图的计数

--图的计数

-总结

--本章小结

-第八周作业

--H

--U

--G

--GT

--作业讨论区说明

-大家谈组合数学(4)

--采访黄连生老师

组合之美

-组合之美

--组合之美之计数

--组合之美之排列组合

--组合之美之多样组合和全排列

-组合之美之线性常系数递推关系

--组合之美之线性常系数递推关系

-组合之美之多样的序列

--组合之美之多样的序列

-组合之美之鸽巢原理

--组合之美之鸽巢原理

-组合之美之转动群与染色

--组合之美之转动群与染色

-采访邹欣

--采访邹欣1

--采访邹欣2

-知识点串串烧

--知识点串串烧

期末测验

-期末测验--期末测验

世界杯引出的问题笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。