当前课程知识点:深度学习基础 > 第八讲 生成式神经网络 > 附:8.4程序 > 附:2.5程序
# -*- coding: utf-8 -*-
"""
演示内容:量纲的特征缩放
(两种方法:标准化缩放法和区间缩放法。每种方法举了两个例子:简单二维矩阵和iris数据集)
"""
#方法1:标准化缩放法 例1:对简单示例二维矩阵的列数据进行
from sklearn import preprocessing
import numpy as np
#采用numpy的array表示,因为要用到其mean等函数,而list没有这些函数
X = np.array([[0, 0],
[0, 0],
[100, 1],
[1, 1]])
# calculate mean
X_mean = X.mean(axis=0)
# calculate variance
X_std = X.std(axis=0)
#print (X_std)
# standardize X
X1 = (X-X_mean)/X_std
print (X1)
print ("")
# we can also use function preprocessing.scale to standardize X
X_scale = preprocessing.scale(X)
print (X_scale)
#方法1: 标准化缩放法 例2:对iris数据二维矩阵的列数据进行。这次采用一个集成的方法StandardScaler
from sklearn import datasets
iris = datasets.load_iris()
X_scale = preprocessing.scale(iris.data)
print (X_scale)
#方法2: 区间缩放法 例3:对简单示例二维矩阵的列数据进行
from sklearn.preprocessing import MinMaxScaler
data = [[0, 0],
[0, 0],
[100, 1],
[1, 1]]
scaler = MinMaxScaler()
print(scaler.fit(data))
print(scaler.transform(data))
#方法2: 区间缩放法 例4:对iris数据二维矩阵的列数据进行
from sklearn.preprocessing import MinMaxScaler
data = iris.data
scaler = MinMaxScaler()
print(scaler.fit(data))
print(scaler.transform(data))
-1.6 程序讲解:使用Sklearn进行精确率-召回率曲线的绘制
-第一讲 作业
- 2.1 特征工程
-2.4 程序讲解:使用sklearn对文档进行向量化的实例
- 第二讲 讲义
-第二讲 作业
- 3.4 逻辑回归
-3.5 程序讲解:使用sklearn进行线性回归和二次回归的比较的程序示例
-第三讲 作业
-第四讲 作业
-第五讲 作业
-第六讲 作业
-第七讲 作业
-第八讲 作业