当前课程知识点:算法设计与分析 >  7 Network Flow >  7.2 Minimum Cut and Maximum Flow >  Minimum Cut and Maximum Flow

返回《算法设计与分析》慕课在线视频课程列表

Minimum Cut and Maximum Flow在线视频

Minimum Cut and Maximum Flow

下一节:Ford-Fulkerson Algorithm

返回《算法设计与分析》慕课在线视频列表

Minimum Cut and Maximum Flow课程教案、知识点、字幕

下面的结果

把流的问题和割的问题联系在一起

我们称为流值引理

令f是任意的流

(A, B)是任意的s-t割

那么 通过这个割的流量

也就是从A流出的量减去流入A的量

等于流f的流值

例如 下图给出了一个s-t流

令A={s} 构建s-t割

通过这个割的流量为24

而按照流值的定义

这个流的流值也是24

对于同样的例子

同样的s-t流

我们令A={s,2,3,4}

得到一个新的s-t割

离开A的流量为25

流入A的流量为1

则通过这个割的流量也是24

再令A={s,3,4,7}

又得到一个s-t割

离开A的流量为28

流入A的流量为4

则通过这个割的流量也是24

下面来证明流值引理

令f是任意的流

(A, B)是任意的s-t割

那么从A流出的量减去流入A的量

等于f的流值

f的流值v(f)定义为从源s流出的流量之和

根据流的守恒要求

A中所有点

除了s外 流入的量等于流出的量

因此v(f)等于A中每个点

流出量与流入量之差再求和

如果一条边的两个端点都在A中

那么上式中

一定对应着一正一负的两项可以消掉

剩余正好为从A流出的量减去流入A的量

命题得证

流和割之间还构成了对偶关系

首先我们给出它们之间的弱对偶性

令f是任意的流

(A, B)是任意的s-t割

那么f的流值不超过这个割的容量

比如下面这个例子中

令A={s} 构建s-t割

割的容量为30

那么任意流的流值不超过30

下面我们来证明弱对偶性

我们已经得到f的流值v(f)

等于从A流出的量减去流入A的量

它小于等于A流出的量

又小于等于从A指向B的边上的容量的总和

这也就是我们定义的(A,B)割的容量

得到了所需的结论

下面我们给出最优性条件

由弱对偶性

我们可以知道

若f是任意的流

(A, B)是任意的s-t割

如果f的流值等于(A, B)割的容量

那么f是最大流

(A, B)是最小割

比如下面的例子中

流值和(A, B)割的容量都是28

对应的流和割分别为最大流和最小割

算法设计与分析课程列表:

1 Introduction of Algorithm

-1.1 Introduction

--Introduction

-1.2 A First Problem: Stable Matching

--A First Problem: Stable Matching

-1.3 Gale-Shapley Algorithm

--Gale-Shapley Algorithm

-1.4 Understanding Gale-Shapley Algorithm

--Understanding Gale-Shapley Algorithm

-Homework1

-Lecture note 1

--Lecture note 1 Introduction of Algorithm

2 Basics of Algorithm Analysis

-2.1 Computational Tractability

--Computational Tractability

-2.2 Asymptotic Order of Growth

--Asymptotic Order of Growth

-2.3 A Survey of Common Running Times

--A Survey of Common Running Times

-Homework2

-Lecture note 2

--Lecture note 2 Basics of Algorithm Analysis

3 Graph

-3.1 Basic Definitions and Applications

--Basic Definitions and Applications

-3.2 Graph Traversal

--Graph Traversal

-3.3 Testing Bipartiteness

--Testing Bipartiteness

-3.4 Connectivity in Directed Graphs

--Connectivity in Directed Graphs

-3.5 DAG and Topological Ordering

--DAG and Topological Ordering

-Homework3

-Lecture note 3

--Lecture note 3 Graph

4 Greedy Algorithms

-4.1 Coin Changing

--Coin Changing

-4.2 Interval Scheduling

--Interval Scheduling

-4.3 Interval Partitioning

--Interval Partitioning

-4.4 Scheduling to Minimize Lateness

--Scheduling to Minimize Lateness

-4.5 Optimal Caching

--Optimal Caching

-4.6 Shortest Paths in a Graph

--Shortest Paths in a Graph

-4.7 Minimum Spanning Tree

--Minimum Spanning Tree

-4.8 Correctness of Algorithms

--Correctness of Algorithms

-4.9 Clustering

--Clustering

-Homework4

-Lecture note 4

--Lecture note 4 Greedy Algorithms

5 Divide and Conquer

-5.1 Mergesort

--Mergesort

-5.2 Counting Inversions

--Counting Inversions

-5.3 Closest Pair of Points

--Closest Pair of Points

-5.4 Integer Multiplication

--Integer Multiplication

-5.5 Matrix Multiplication

--Video

-5.6 Convolution and FFT

--Convolution and FFT

-5.7 FFT

--FFT

-5.8 Inverse DFT

--Inverse DFT

-Homework5

-Lecture note 5

--Lecture note 5 Divide and Conquer

6 Dynamic Programming

-6.1 Weighted Interval Scheduling

--Weighted Interval Scheduling

-6.2 Segmented Least Squares

--Segmented Least Squares

-6.3 Knapsack Problem

--Knapsack Problem

-6.4 RNA Secondary Structure

--RNA Secondary Structure

-6.5 Sequence Alignment

--Sequence Alignment

-6.6 Shortest Paths

--Shortest Paths

-Homework6

-Lecture note 6

--Lecture note 6 Dynamic Programming

7 Network Flow

-7.1 Flows and Cuts

--Flows and Cuts

-7.2 Minimum Cut and Maximum Flow

--Minimum Cut and Maximum Flow

-7.3 Ford-Fulkerson Algorithm

--Ford-Fulkerson Algorithm

-7.4 Choosing Good Augmenting Paths

--Choosing Good Augmenting Paths

-7.5 Bipartite Matching

--Bipartite Matching

-Homework7

-Lecture note 7

--Lecture note 7 Network Flow

8 NP and Computational Intractability

-8.1 Polynomial-Time Reductions

--Polynomial-Time Reductions

-8.2 Basic Reduction Strategies I

--Basic Reduction Strategies I

-8.3 Basic Reduction Strategies II

--Basic Reduction Strategies II

-8.4 Definition of NP

--Definition of NP

-8.5 Problems in NP

--Problems in NP

-8.6 NP-Completeness

--NP-Completeness

-8.7 Sequencing Problems

--Sequencing Problems

-8.8 Numerical Problems

--Numerical Problems

-8.9 co-NP and the Asymmetry of NP

--co-NP and the Asymmetry of NP

-Homework8

-Lecture note 8

--Lecture note 8 NP and Computational Intractability

9 Approximation Algorithms

-9.1 Load Balancing

--Load Balancing

-9.2 Center Selection

--Center Selection

-9.3 The Pricing Method: Vertex Cover

--The Pricing Method: Vertex Cover

-9.4 LP Rounding: Vertex Cover

--LP Rounding: Vertex Cover

-9.5 Knapsack Problem

--Knapsack Problem

-Homework9

-Lecture note 9

--Lecture note 9 Approximation Algorithms

10 Local Search

-10.1 Landscape of an Optimization Problem

--Landscape of an Optimization Problem

-10.2 Maximum Cut

--Maximum Cut

-10.3 Nash Equilibria

--Nash Equilibria

-10.4 Price of Stability

--Price of Stability

-Homework10

-Lecture note 10

--Lecture note 10 Local Search

11 Randomized Algorithms

-11.1 Contention Resolution

--Contention Resolution

-11.2 Linearity of Expectation

--Linearity of Expectation

-11.3 MAX 3-SAT

--MAX 3-SAT

-11.4 Chernoff Bounds

--Chernoff Bounds

-Homework11

-Lecture note 11

--Lecture note 11 Randomized Algorithms

Exam

-Exam

Minimum Cut and Maximum Flow笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。