大数据管理与挖掘

本课程与其他同类课程不同,内容侧重介绍如何用大数据挖掘知识解决各种实际问题。 本课程的特色在于以纺织行业为背景,以高维纺织生产数据为对象,以数据驱动的纺纱质量控制为场景,以数据采集、处理、建模以及可视化分析为手段,全面给学习者阐述大数据融合、大数据存储、大数据分析、大数据隐私、大数据管理系统等。

开设学校:西安工程大学;学科:计算机、

大数据管理与挖掘课程:前往报名学习

大数据管理与挖掘视频慕课课程简介:

本课程与其他同类课程不同,内容侧重介绍如何用大数据挖掘知识解决各种实际问题。 本课程的特色在于以纺织行业为背景,以高维纺织生产数据为对象,以数据驱动的纺纱质量控制为场景,以数据采集、处理、建模以及可视化分析为手段,全面给学习者阐述大数据融合、大数据存储、大数据分析、大数据隐私、大数据管理系统等。

前往报名学习

大数据管理与挖掘课程列表:

{{'上次学习:'+learn_list['xpu0854003267']['last_leaf_name']}}

第1章 课程概述

-第1章 教学目标

--第1章 教学目标

-1.1 大数据的基本概念

--1.1 大数据的基本概念

-1.2 大数据的演变过程

--1.2 大数据的演变过程

-1.3 大数据应用

--1.3 大数据应用

-1.4 大数据的处理模式

--1.4 大数据的处理模式

-1.5 大数据管理的关键技术

--1.5 大数据管理的关键技术

-第1章 作业

--第1章 作业

-第1章 讨论

--第1章 讨论

第2章 大数据融合

-第2章 教学目标

--第2章 教学目标

-2.1 大数据融合的概念

--2.1 大数据融合的概念

-2.2 大数据融合的方法论

--2.2 大数据融合的方法论

-2.3 数据融合技术

--2.3 数据融合技术

-2.4 知识融合技术

--2.4 知识融合技术

-2.5 大数据融合的驱动枢纽

--2.5 大数据融合的驱动枢纽

-2.6 小结

--2.6 小结

-第2章 作业

--第2章 作业

-第2章 讨论

--第2章 讨论

第3章 大数据存储

-第3章 教学目标

--第3章 教学目标

-3.1 大数据存储与管理方法

--3.1 大数据存储与管理方法

-3.2 基于新型存储的大数据管理

--3.2 基于新型存储的大数据管理

-3.3 大数据处理与存储一体化技术

--3.3 大数据处理与存储一体化技术

-3.4 小结

--3.4 小结

-第3章 作业

--第3章 作业

-第3章 讨论

--第3章 讨论

第4章 大数据分析

-第4章 教学目标

--第4章 教学目标

-4.1 大数据的实时分析

--4.1 大数据的实时分析

-4.2 大数据的交互式分析

--4.2 大数据的交互式分析

-4.3 云在线聚集

--4.3 云在线聚集

-4.4 大数据的智能分析

--4.4 大数据的智能分析

-4.5 小结

--4.5 小结

-第4章 作业

--第4章 作业

-第4章 讨论

--第4章 讨论

第5章 大数据隐私

-第5章 教学目标

--第5章 教学目标

-5.1 隐私保护技术

--5.1 隐私保护技术

-5.2 隐私保护技术的应用

--5.2 隐私保护技术的应用

-5.3 大数据隐私管理

--5.3 大数据隐私管理

-5.4 小结

--5.4 小结

-第5章 作业

--第5章 作业

-第5章 讨论

--第5章 讨论

第6章 大数据管理系统

-第6章 教学目标

--第6章 教学目标

-6.1 云计算 大数据基础平台与支撑技术

--6.1 云计算 大数据基础平台与支撑技术

-6.2 批数据与流数据管理系统

--6.2 批数据与流数据管理系统

-6.3 SQL NOSQL与NEWSQL系统

--6.3 SQL NOSQL与NEWSQL系统

-6.4 小结

--6.4 小结

-第6章 作业

--第6章 作业

-第6章 讨论

--第6章 讨论

第7章 数据回归方法

-第7章 教学目标

--第7章 教学目标

-7.1 一元回归

--7.1 一元回归

-7.2 多元回归

--7.2 多元回归

-7.3 逐步回归

--7.3 逐步回归

-7.4 Logistic回归

--7.4 Logistic回归

-7.5 应用实例-多因子选股模型的实现

--7.5 应用实例-多因子选股模型的实现

-7.6 小结

--7.6 小结

-第7章 作业

--第7章 作业

-第7章 讨论

--第7章 讨论

第8章 分类方法

-第8章 教学目标

--第8章 教学目标

-8.1 分类方法概要

--8.1 分类方法概要

-8.2 K-近邻(KNN)

--8.2 K-近邻(KNN)

-8.3 贝叶斯分类

--8.3 贝叶斯分类

-8.4 神经网络

--8.4 神经网络

-8.5 LOGISTIC分类

--8.5 LOGISTIC分类

-8.6 判别分析

--8.6 判别分析

-8.7 支持向量机(SVM)

--8.7 支持向量机(SVM)

-8.8 决策树

--8.8 决策树

-8.9 分类的评判

--8.9 分类的评判

-8.10 小结

--8.10 小结

-第8章 作业

--第8章 作业

-第8章 讨论

--第8章 讨论

第9章 聚类方法

-第9章 教学目标

--第9章 教学目标

-9.1 聚类方法概要

--9.1 聚类方法概要

-9.2 K-means方法

--9.2 K-means方法

-9.3 层次聚类

--9.3 层次聚类

-9.4 神经网络聚类

--9.4 神经网络聚类

-9.5 模糊C-均值(FCM)方法

--9.5 模糊C-均值(FCM)方法

-9.6 高斯混合聚类方法

--9.6 高斯混合聚类方法

-9.7 类别数的确定方法

--9.7 类别数的确定方法

-9.8 应用实例-股票聚类分池

--9.8 应用实例-股票聚类分池

-9.9 小结

--9.9 小结

-第9章 作业

--第9章 作业

-第9章 讨论

--第9章 讨论

第10章 预测方法

-第10章 教学目标

--第10章 教学目标

-10.1 预测方法概要

--10.1 预测方法概要

-10.2 灰色预测

--10.2 灰色预测

-10.3 马尔科夫预测

--10.3 马尔科夫预测

-10.4 实用实例-纺纱质量预测

--10.4 实用实例-纺纱质量预测

-10.5 小结

--10.5 小结

-第10章 作业

--第10章 作业

-第10章 讨论

--第10章 讨论

第11章 诊断方法

-第11章 教学目标

--第十一章 教学目标

-11.1 离群点诊断概要

--11.1 离群点诊断概要

-11.2 基于统计的离群点诊断

--11.2 基于统计的离群点诊断

-11.3 基于距离的离群点诊断

--11.3 基于距离的离群点诊断

-11.4 基于密度的离群点挖掘

--11.4 基于密度的离群点挖掘

-11.5 基于聚类的离群点挖掘

--11.5 基于聚类的离群点挖掘

-11.6 应用实例-纱线断点诊断

--11.6 应用实例-纱线断点诊断

-11.7 小结

--11.7 小结

-第11章 作业

--第11章 作业

第12章 大数据技术应用

-第12章 教学目标

--第12章 教学目标

-12.1 数字挖掘技术的应用

--12.1 数字挖掘技术的应用

-12.2 纺纱质量控制

--12.2 纺纱质量控制

-第12章 作业

--第12章 作业

-第12章 讨论

--第12章 讨论

大数据管理与挖掘开设学校:西安工程大学

大数据管理与挖掘授课教师:

邵景峰-教授-西安工程大学-

也许你还感兴趣的课程:


  1. 大数据管理与挖掘(2021秋)

  2. Systematic Anatomy(Round 2)

  3. Introduction to E-Commerce(Round 2)

  4. 普通生物学(2021秋)

  5. 儿科学(2021暑假班)

  6. 实用临床生物化学检验(2021暑假班)

  7. 太阳能利用原理与技术(2021秋)

  8. 交通系统仿真技术(2021暑假班)

  9. 固定消防设施(2021秋)

  10. 产品设计理念与实务(2021秋)

  11. 运动训练学(2021秋)

  12. 组织行为学(全英)(2021暑假班)

  13. C语言程序设计(2021暑假班)

  14. 创新思维与创新方法(2021秋)

  15. 环境工程概论(2021秋)

  16. 船舶管路安装工艺(2021秋)

  17. 运动康复技术学(2021秋)

  18. 生产过程调度与决策(2021秋)

  19. 纪录片专题研究(2021秋)

  20. 汉语之美——汉语国际教育课堂教学理论与实践(2021秋)
© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。