当前课程知识点:大数据机器学习 >  第三章 模型性能评估 >  5.PR曲线 >  5.PR曲线

返回《大数据机器学习》慕课在线视频课程列表

5.PR曲线在线视频

5.PR曲线

下一节:6.ROC和AUC曲线

返回《大数据机器学习》慕课在线视频列表

5.PR曲线课程教案、知识点、字幕

PR曲线方法

就是一种更综合的评估方法

PR曲线是如何生成的呢

首先可根据学习器的预测结果

对所有样例进行排序

从最可能是正例的样本

到最后的最不可能是正例的样本

按此顺序逐个把样本作为正例进行预测

则每次可以计算出当前的查全率

查准率

以查准率为纵轴

查全率为横轴作图

就得到了查准率查全率的曲线--PR曲线

PR图直观地显示出

学习器在样本总体上的查全率

查准率

在进行比较时

若一个学习器的PR曲线

被另一个学习器的曲线完全包住

则可断言后者的性能优于前者

平衡点是查准率等于查全率的点

也可以作为性能比较的度量

平衡点方法过于简化了一些

更常用的是F1度量为2PR/(P+R)

就是将二者进行结合

不同任务对查准率和查全率的重视程度不一样

比如广告推荐就希望尽量准确

不要过多的干扰用户

而台风预警则查全率更重要

F1度量的一般形式

考虑到这一点

为F-度量 β值度量了

查全率对查准率的相对重要性

当β=1时就退化为F1度量

很多时候我们有多个二分类混淆矩阵

例如进行多次训练测试

每次得到一个混淆矩阵

或者是在多个数据集上进行训练测试

希望估算算法的全局性能

或者是执行多分类任务

每两两类别的组合都对应一个混淆矩阵

我们希望在N个二分类混淆矩阵上

综合考察查准率和查全率

一种是宏查准率 宏查全率 宏F1

就是把所有的P R F1分别取平均

另一种是微查准率

微查全率和微F1

就是先对每个TP

FP PN 分别取平均

然后根据公式计算各自的性能值

分类过程一般对每个测试样本

预测一个0到1的概率

然后将所有样例根据概率大小排序

这就相当于在这个排序中

以某个截断点将样本分为两部分

前一部分判做正例

后一部分则判作反例

可以根据查准率和查全率的重视程度

选取截断点

大数据机器学习课程列表:

第一章 概述

-1.机器学习定义和典型应用

--1.机器学习定义和典型应用

-2.机器学习和人工智能的关系

--2.机器学习和人工智能的关系

-3.深度学习方法和其它人工智能方法的共性和差异

--3.深度学习方法和其它人工智能方法的共性和差异

-4.机器学习和数据挖掘的关系

--4.机器学习和数据挖掘的关系

-5.机器学习和统计学习的关系

--5.机器学习和统计学习的关系

-6.机器学习的发展历程

--6.机器学习的发展历程

-7.大数据机器学习的主要特点

--7.大数据机器学习的主要特点

-第一章 概述--7.大数据机器学习的主要特点

-1.相关拓展资料

第二章 机器学习基本概念

-1机器学习的基本术语

--1机器学习的基本术语

-2.监督学习

--2.监督学习

-3.假设空间

--3.假设空间

-4.学习方法三要素

--4.学习方法三要素

-第二章 机器学习基本概念--4.学习方法三要素

-5.奥卡姆剃刀定理

--5.奥卡姆剃刀定理

-6.没有免费的午餐定理

--6.没有免费的午餐定理v

-7.训练误差和测试误差

--7.训练误差和测试误差

-8.过拟合与模型选择

--8.过拟合与模型选择

-第二章 机器学习基本概念--8.过拟合与模型选择

-9.泛化能力

--9.泛化能力

-10.生成模型和判别模型

--10.生成模型和判别模型

-统计学习与监督学习拓展资料

第三章 模型性能评估

-1.留出法

--1.留出法

-2.交叉验证法

--2.交叉验证法

-3.自助法

--3.自助法

-4.性能度量

--4.性能度量

-5.PR曲线

--5.PR曲线

-6.ROC和AUC曲线

--6.ROC和AUC曲线

-第三章 模型性能评估--6.ROC和AUC曲线

-7.代价敏感错误率

--7.代价敏感错误率

-8.假设检验

--8.假设检验

-9.T检验

--9.T检验

-10.偏差和方差

--10.偏差和方差

第四章 感知机

-1.感知机模型

--1.感知机模型

-第四章 感知机--1.感知机模型

-2.感知机学习策略

--2.感知机学习策略

-3.感知机学习算法

--3.感知机学习算法

-第四章 感知机--3.感知机学习算法

-感知机拓展资料

第五章 聚类

-1.原型聚类描述

--1.原型聚类描述

-第五章 聚类--1.原型聚类描述

-2.性能度量

--2.性能度量

-第五章 聚类--2.性能度量

-3.1原型聚类 k均值算法

--3.1原型聚类 k均值算法

-3.2 原型聚类 学习向量算法

--3.2 原型聚类 学习向量算法

-3.3 原型聚类 密度聚类

--3.3 原型聚类 密度聚类

-第五章 聚类--3.3 原型聚类 密度聚类

-3.4原型聚类 层次聚类

--3.4原型聚类 层次聚类

-聚类拓展资料

第六章 贝叶斯分类器及图模型

-1.综述

--1.综述

-2.概率图模型

--2.概率图模型

-第六章 贝叶斯分类器及图模型--2.概率图模型

-3.贝叶斯网络

--3.贝叶斯网络

-第六章 贝叶斯分类器及图模型--3.贝叶斯网络

-4.朴素贝叶斯分类器

--4.朴素贝叶斯分类器

-第六章 贝叶斯分类器及图模型--4.朴素贝叶斯分类器

-5.半朴素贝叶斯分类器

--5.半朴素贝叶斯分类器v

-第六章 贝叶斯分类器及图模型--5.半朴素贝叶斯分类器

-6.贝叶斯网络结构学习推断

--6.贝叶斯网络结构学习推断

-7.吉布斯采样

--7.吉布斯采样

-第六章 贝叶斯分类器及图模型--7.吉布斯采样

-贝叶斯相关拓展

第七章 决策树和随机森林

-开头

--开头

-1.决策树模型与学习基本概念

--1.决策树模型与学习基本概念

-2.信息量和熵

--2.信息量和熵

-第七章 决策树和随机森林--2.信息量和熵

-3.决策树的生成

--3.决策树的生成

-4.决策树的减枝

--4.决策树的减枝

-5.CART算法

--5.CART算法

-6.随机森林

--6.随机森林

-决策树相关拓展

第八章 逻辑斯谛回归与最大熵模型

-简介

--简介

-1.逻辑斯谛回归模型

--1.逻辑斯谛回归模型

-第八章 逻辑斯谛回归与最大熵模型--1.逻辑斯谛回归模型

-2.最大熵模型

--2.最大熵模型

-3.模型学习的最优化方法

--3.模型学习的最优化方法

-第八章 逻辑斯谛回归与最大熵模型--3.模型学习的最优化方法

-logistic回归相关拓展

第九章 SVM

-1.开头

--1.开头

-2.SVM简介

--2.SVM简介

-3.线性可分支持向量机

--3.线性可分支持向量机

-第九章 SVM--3.线性可分支持向量机

-4. 凸优化问题的基本概念

--4. 凸优化问题的基本概念

-第九章 SVM--4. 凸优化问题的基本概念

-5.支持向量的确切定义

--5.支持向量的确切定义

-6.线性支持向量机

--6.线性支持向量机

-第九章 SVM--6.线性支持向量机

-svm相关拓展资料

--svm相关拓展资料

第十章 核方法与非线性SVM

-开头

--开头

-第十章 核方法与非线性SVM--开头

-1.泛函基础知识

--1.泛函基础知识

-第十章 核方法与非线性SVM--1.泛函基础知识

-2. 核函数和非线性支持向量机

--2. 核函数和非线性支持向量机

-第十章 核方法与非线性SVM--2. 核函数和非线性支持向量机

-3. 序列最小最优化算法

--3. 序列最小最优化算法

-第十章 核方法与非线性SVM--3. 序列最小最优化算法

第十一章 降维与度量学习

-开头

--开头

-1. k近邻学习

--1. k近邻学习

-第十一章 降维与度量学习--1. k近邻学习

-2. 降维嵌入

--2.降维嵌入

-第十一章 降维与度量学习--2. 降维嵌入

-3. 主成分分析

--3.主要成分分析

-第十一章 降维与度量学习--3. 主成分分析

-4. 核化线性降维

--4.核化线性降维

-5. 流型学习和度量学习

--5.流型学习和度量学习

第十二章 提升方法

-1. 提升方法Adaboost算法

--1. 提升方法adaboost算法

-第十二章 提升方法--1. 提升方法Adaboost算法

-2. Adaboost算法的训练误差分析

--2. Adaboost算法的训练误差分析

-3. Adaboost算法的解释

--3. Adaboost算法的解释

-4. Adaboost的实现

--4. Adaboost的实现

-第十二章 提升方法--4. Adaboost的实现

-adaboost拓展资料

--adaboost拓展资料

第十三章 EM算法及混合高斯模型

-开头

--开头

-1. 问题提出

--1. 问题提出

-2. EM算法的引入

--2. EM算法的引入

-3. EM算法的收敛性

--3. EM算法的收敛性

-4. EM算法在高斯混合模型学习中的应用

--4. EM算法在高斯混合模型学习中的应用

-5. EM算法的推广

--5. EM算法的推广

-第十三章 EM算法及混合高斯模型--3. EM算法的收敛性

-EM算法拓展资料

第十四章 计算学习理论

-开头

--开头

-1. 计算学习理论的基础知识

--1. 计算学习理论的基础知识

-第十四章 计算学习理论--1. 计算学习理论的基础知识

-2. 概率近似正确学习理论

--2. 概率近似正确学习理论

-3. 有限假设空间

--3.有限假设空间

-4. VC维

--4. VC维

-第十四章 计算学习理论--4. VC维

-5. 学习稳定性

--5. 学习稳定性

-计算学习理论拓展资料

第十五章 隐马尔可夫模型

-开头

--开头

-1. 隐马尔科夫模型的基本概念

--1. 隐马尔科夫模型的基本概念

-第十五章 隐马尔可夫模型--1. 隐马尔科夫模型的基本概念

-2. 概率计算算法

--2. 概率计算算法

-3. 学习算法

--3.学习算法

-第十五章 隐马尔可夫模型--3. 学习算法

-4预测算法

--4. 预测算法

-第十五章 隐马尔可夫模型--4预测算法

-隐马尔可夫拓展资料

第十六章 条件随机场

-开头

--开头

-1.概率无向图模型

--1.概率无向图模型

-第十六章 条件随机场--1.概率无向图模型

-2.条件随机场的定义与形式

--2.条件随机场的定义与形式

-第十六章 条件随机场--2.条件随机场的定义与形式

-3.条件随机场的计算问题

--3.条件随机场的计算问题

-4.条件随机场的学习算法

--4.条件随机场的学习算法

-5.条件随机场的预测算法

--5.条件随机场的预测算法

-第十六章 条件随机场--5.条件随机场的预测算法

第十七章 概率图模型的学习与推断

-开头

--开头

-1.精确推断法:变量消去法和信念传播法

--1.精确推断法:变量消去法和信念传播法

-第十七章 概率图模型的学习与推断--1.精确推断法:变量消去法和信念传播法

-2.近似推断法:MCMC和变分推断

--2.近似推断法:MCMC和变分推断

-第十七章 概率图模型的学习与推断--2.近似推断法:MCMC和变分推断

第十八章 神经网络和深度学习

-1.神经网络的发展历程

--1.神经网络的发展历程

-2.神经网络的基本概念以及常见的神经网络(一)

--2.神经网络的基本概念以及常见的神经网络(一)

-第十八章 神经网络和深度学习--2.神经网络的基本概念以及常见的神经网络(一)

-3.神经网络的基本概念以及常见的神经网络(二)

--3.神经网络的基本概念以及常见的神经网络(二)

-4.玻尔兹曼机

--4.玻尔兹曼机

-5.深度学习

--5.深度学习

-第十八章 神经网络和深度学习--5.深度学习

-神经网络与深度学习拓展资料

第十九章 深度学习正则化方法

-1. 深度学习简介和架构设计

--1. 深度学习简介和架构设计

-2. 计算图形式的反向传播算法

--2. 计算图形式的反向传播算法

-3.深度学习的正则化方法(一)

--3.深度学习的正则化方法(一)

-4.深度学习的正则化方法(二)

--4.深度学习的正则化方法(二)

-深度学习正则化方法拓展资料

第二十章 深度学习优化方法

-1.深度学习的优化问题

--1.深度学习的优化问题

-第二十章 深度学习优化方法--1.深度学习的优化问题

-2.神经网络优化的挑战

--2. 神经网络优化的挑战

-3.神经网络的优化算法

--3.神经网络的优化算法

-第二十章 深度学习优化方法--3.神经网络的优化算法

-4.相关策略

--4.相关策略

-第二十章 深度学习优化方法--4.相关策略

-深度学习优化算法拓展资料

5.PR曲线笔记与讨论

收藏文章
表情删除后不可恢复,是否删除
取消
确定
图片正在上传,请稍后...
  • 评分:
评论内容为空!
还没有评论,快来抢沙发吧!

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。
欢迎学习『5.PR曲线慕课视频播放-大数据机器学习-MOOC慕课视频教程-柠檬大学』