当前课程知识点:模拟电子技术基础(基础部分) > 第六部分 > 4.13差分放大电路的改进 > 4.13差分放大电路的改进
在分立元件所构成的差分放大电路里
和集成运放最初期的产品里
都会加一些改进的措施
比如常见的就是在
两个发射极之间加一个电位器RW
那么大家可以看到这个电路
当电位器不在中点的时候
它一定是不对称的
那么有几个问题需要讨论
第一个是为什么加RW
其实刚才我已经回答这个问题了
当两边不对称的时候
我们输入信号为0的时候
输出不为0
因此这个电位器也叫做调零电位器
通过调节RW
使得输入为0时候输出为0
第二个RW取值是大一些呢
还是应该小一些呢
有的同学会想
当然大一些好了容易调
但是从另一个角度我们看
如果它需要一个阻值很大的电位器来调零的话
说明你这个电路它的对称性太差
要重新选择元件
因此在实现差分放大电路的时候
如果我们挑管子
我们要在一堆管子里边挑出两个一对
它的性能相近的
而且我们在挑电阻的时候
由于实际的电阻它都是有误差的
比如说标称值是10kΩ的
如果实际测量它
它可能是10.1kΩ
也可能是9.9kΩ
那我们需要选择Rc1和Rc2
要9.9kΩ都9.9kΩ
到10.1kΩ都10.1kΩ
所以如果你需要一个
阻值比较大的电位器才能调零
说明整个电路需要重新去选择
RW对动态参数有没有影响呢
我们从输入回路上看
当我们给这个电路差模信号的时候
比如是从uI1走到uI2
这样一个通路上我们可以看到
它必然经过RW
因此它一定会对动态参数有影响的
那对什么参数有影响呢
首先它肯定是对输入电阻有影响
对输入端产生影响
必然映射到输出上
所以它对放大倍数也有影响
如果我们把RW滑动端放到中点
我们来看一看它的差模放大倍数
和它的输入电阻有什么差别
它的差模放大倍数的分母部分
就要加上一个(1+β)RW/2
这里要注意是二分之一
因为对于每一边电路
分得了一个二分之一的RW
而它的输入电阻
除了我们原来看到的四个电阻
两个Rb两个rbe外
还有一个就是RW
而RW本身它所流过的电流是iE
所以要加上(1+β)RW
再有当我们输入电阻要求的比较高的时候
希望它很大的时候
那么差分放大电路的那一对放大管
可以用场效应管来实现
那就是这个电路
从这个电路上我们可以看到
它的输入电阻可以很大
然后 g-s(电压)和iD之间的关系是gm的关系
由此我们就可以得到这个电路本身
它的差模放大倍数是-gm×Rd
如果有负载的话
应该再并上二分之一的RL
它输入电阻是无穷大
输出电阻是两倍的Rd
好 下面我们讨论一下
如果uI1等于10mV
uI2等于5mV
那么对于这样一个电路
它到底输入了多少差模信号
输入了多少共模信号
对于这一类电路
我们可以分两步走
第一步就是令uI2=0
看一看只有uI1作用的时候
有多少差模(信号)有多少共模(信号)
然后再令uI1=0
看uI2单独作用的时候
有多少差模(信号)有多少共模(信号)
然后把它们加起来就可以了
我们通过这样的分析
我们就可以得到结论说
uId也就是差模信号是5mV
是10mV减5mV 所以是5mV
而由于uI1的作用
每边输入了5mV的共模信号
uI2的作用每边有2.5mV的共模信号
所以总的共模信号是7.5mV
讨论二我们看
这是一个单端输入单端输出的一个电路
第一个uI等于10mV
问它的uId和uIc
这个通过前面的分析我们可以迅速的
得到了结论
就是差模信号是10mV
共模信号是5mV
然后我们又给出了
说如果在这个电路里边
它的差模放大倍数是-10的两次方
也就是-100
它的共模抑制比是10的三次方
然后我们用直流表去测uO
那这uO到底
测出来的是个什么东西呢
前面我们曾经分析过
说单端输出的时候
uO就比较复杂了
它既有原来在静态时候的这一点的电位
还有差模信号的作用
还有共模信号的作用
所以我们测出来它是三项
这第一项里边的Ad
我们知道是-10的平方
我们也知道了uId就是那10mV
那第二部分第三部分是什么呢
这是什么呢
我们知道了共模抑制比
知道了差模放大倍数
就可以求出Ac 也就是共模放大倍数
求得的Ac乘上5mV
就是共模信号作用在输出端的响应
然后我们用单端输出分析静态工作点的方法
用戴维南定理把左边的输出回路
等效成一个新的VCC'和新的一个Rc'
那我们就可以得到
这个UCQ1的值
所以这样最终我们就可以得到
如果用直流表去测试的话
测得的到底是多少
这里要提出来
就是uI这样一种写法实际上是直流信号
注意既然是信号
它描述的就应该是变化量
-1.1模拟信号与模拟电路
-1.2模拟电子技术基础课程特点及如何学习该课程
-2.1本征半导体
--本征半导体
-2.1本征半导体--作业
-2.2杂质半导体
--杂质半导体
-2.2杂质半导体--作业
-2.3 PN结的形成及其单向导电性
-2.3 PN结的形成及其单向导电性--作业
-2.4 PN 结的电容效应
-2.4 PN 结的电容效应--作业
-2.5半导体二极管的结构
-2.5半导体二极管的结构--作业
-2.6半导体二极管的伏安特性和电流方程
--2.6半导体二极管的伏安特性和电流方程
-2.7二极管的直流等效电路(直流模型)
-第一部分--2.7二极管的直流等效电路(直流模型)
-2.8二极管的交流等效电路和主要参数
-第一部分--2.8二极管的交流等效电路和主要参数
-实验1-二极管伏安特性的测试
-2.9晶体三极管的结构和符号
-2.9晶体三极管的结构和符号--作业
-2.10晶体三极管的放大原理
-第一部分--2.10晶体三极管的放大原理
-2.11晶体三极管的输入特性和输出特性
-2.11晶体三极管的输入特性和输出特性--作业
-实验2-三极管输出特性的测试
-第一部分--作业
-2.12晶体三极管的三个工作区域及温度对特性的影响
--2.12晶体三极管的三个工作区域及温度对特性的影响
-2.13晶体三极管的主要参数
-第二部分--2.13晶体三极管的主要参数
-3.1放大的概念
--3.1放大的概念
-第二部分--3.1放大的概念
-EDA应用1-2-半导体二极管和三极管特性的测试
-3.2 放大电路的性能指标
--Video
-第二部分--3.2 放大电路的性能指标
-实验3-放大电路(黑盒子)性能指标的测试
-3.3基本共射放大电路的组成及各元件的作用
-3.3基本共射放大电路的组成及各元件的作用--作业
-EDA应用3-在Multisim环境中电路的搭建
-3.4基本共射放大电路的波形分析
-3.4基本共射放大电路的波形分析--作业
-3.5放大电路的组成原则和两种实用的放大电路
--3.5放大电路的组成原则和两种实用的放大电路
-3.6放大电路的直流通路和交流通路
-第二部分--3.6放大电路的直流通路和交流通路
-3.7放大电路的分析方法—图解法
-第二部分--3.7放大电路的分析方法—图解法
-3.8图解法用于放大电路的失真分析
--3.8图解法用于放大电路的失真分析
-3.9直流负载线和交流负载线
-第二部分--3.9直流负载线和交流负载线
-第二周作业
--第二周作业题
-EDA应用4-基本共射放大电路的电压传输特性
-3.10放大电路的等效模型及其建立方法
-第三部分--3.10放大电路的等效模型及其建立方法
-3.11晶体管的h参数等效模型(交流等效模型)
-第三部分--3.11晶体管的h参数等效模型(交流等效模型)
-3.12基本共射放大电路的动态分析
-第三部分--3.12基本共射放大电路的动态分析
-3.13学会选用合适的方法来分析电路
-第三部分--3.13学会选用合适的方法来分析电路
-3.14放大电路中静态对动态的影响
--3.14放大电路中静态对动态的影响
-3.15静态工作点的稳定
-第三部分--3.15静态工作点的稳定
-3.16典型的静态工作点稳定电路的分析
--3.16典型的静态工作点稳定电路的分析
-3.17稳定静态工作点的方法
--3.17稳定静态工作点的方法
-EDA应用5-共射放大电路中电阻参数对静态工作点的影响
-第三周作业
-EDA应用6-温度对静态工作点的影响
-实验4-静态工作点稳定共射放大电路的测试
-3.18基本共集放大电路
--3.18基本共集放大电路
-3.19基本共基放大电路
-第四部分--3.19基本共基放大电路
-3.20晶体管基本放大电路三种接法的比较
--3.20晶体管基本放大电路三种接法的比较
-3.21结型场效应管的工作原理
-第四部分--3.21结型场效应管的工作原理
-3.22 N沟道结型场效应管的特性
-第四部分--3.22 N沟道结型场效应管的特性
-3.23 N沟道增强型绝缘栅型场效应管(增强型MOS管)
--3.23 N沟道增强型绝缘栅型场效应管(增强型MOS管)
-3.23 N沟道增强型绝缘栅型场效应管(增强型MOS管)--作业
-3.24 N沟道耗尽型MOS管
-第四部分--3.24 N沟道耗尽型MOS管
-3.25场效应管的分类
-第四部分--3.25场效应管的分类
-第四周作业题
-3.26场效应管放大电路静态工作点的设置方法
-第五部分--3.26场效应管放大电路静态工作点的设置方法
-3.27场效应管放大电路的动态分析
-第五部分--3.27场效应管放大电路的动态分析
-EDA应用7-共源放大电路的测试
-实验5-共源放大电路的测试
-3.28复合管
--3.28复合管
-第五部分--3.28复合管
-4.1多级放大电路的耦合方式—直接耦合
-第五部分--4.1多级放大电路的耦合方式—直接耦合
-4.2多级放大电路的耦合方式—阻容耦合、变压器耦合
-第五部分--4.2
-4.3多级放大电路的耦合方式—光电耦合
-第五部分--4.3多级放大电路的耦合方式—光电耦合
-4.4多级放大电路的动态参数分析
--4.4多级放大电路的动态参数分析
-4.5多级放大电路的讨论
--4.5多级放大电路的讨论
-第五周作业
-实验6-两级放大电路的测试
-4.6集成运放概述—结构特点、电路组成及电压传输特性
-4.6集成运放概述—结构特点、电路组成及电压传输特性--作业
-4.7零点漂移现象及差分放大电路的组成
-第六部分--4.7零点漂移现象及差分放大电路的组成
-4.8对差分放大电路的需求分析及长尾式差分放大电路的静态分析
--4.8对差分放大电路的需求分析及长尾式差分放大电路的静态分析
-第六部分--4.8对差分放大电路的需求分析及长尾式差分放大电路的静态分析
-4.9长尾式差分放大电路的动态分析
-第六部分--4.9长尾式差分放大电路的动态分析
-4.10双端输入单端输出差分放大电路
--4.10双端输入单端输出差分放大电路
-4.11单端输入双端输出差分放大电路及四种接法比较
-第六部分--4.11单端输入双端输出差分放大电路及四种接法比较
-4.12具有恒流源的差分放大电路
-第六部分--4.12具有恒流源的差分放大电路
-4.13差分放大电路的改进
-第六部分--4.13差分放大电路的改进
-EDA应用8-直接耦合多级放大电路的辅助设计
-作业
--第六周作业
-4.14电流源电路—镜像电流源、微电流源
--4.14电流源电路—镜像电流源、微电流源
-4.15电流源电路 —多路电流源
-第七部分--4.15电流源电路 —多路电流源
-4.16有源负载放大电路
--4.16有源负载放大电路
-4.17互补输出级的电路组成及工作原理
-4.17互补输出级的电路组成及工作原理--作业
-4.18消除交越失真的互补输出级和准互补输出级
-第七部分--4.18消除交越失真的互补输出级和准互补输出级
-4.19放大电路读图方法及双极型集成运放原理电路分析
-第七部分--4.19
-4.20单极型(CMOS)集成运放原理电路分析
--第七部分 4.20单极型(CMOS)集成运放原理电路分析
-4.21集成运放的主要性能指标
-第七部分--4.21集成运放的主要性能指标
-4.22集成运放的分类
-第七部分--4.22集成运放的分类
-4.23集成运放的保护电路以及低频等效电路
--第七部分 4.23集成运放的保护电路以及低频等效电路
-作业
-5.1频率响应的有关概念
--第八部分 5.1频率响应的有关概念
-5.2晶体管的高频等效电路
-第八部分--5.2晶体管的高频等效电路
-5.3晶体管电流放大倍数的频率响应
-第八部分--5.3晶体管电流放大倍数的频率响应
-5.4单管共射放大电路的中频段
-5.4单管共射放大电路的中频段--作业
-5.5单管共射放大电路低频段的频率响应
-第八部分--5.5单管共射放大电路低频段的频率响应
-5.6单管共射放大电路高频段的频率响应
-第八部分--5.6单管共射放大电路高频段的频率响应
-5.7单管共射放大电路的波特图及带宽增益积
-第八部分--5.7单管共射放大电路的波特图及带宽增益积
-5.8单管共源放大电路的频率响应
--第八部分 5.8单管共源放大电路的频率响应
-5.9多级放大电路的频率响应
-5.9多级放大电路的频率响应--作业
-5.10关于频率响应的讨论
-第八部分--5.10关于频率响应的讨论
-EDA应用9-两级放大电路频率响应的测试
-实验7-两级放大电路频率响应的测试
-第八周习题
-6.1什么是反馈
--6.1什么是反馈
-6.1什么是反馈--作业
-6.2正反馈与负反馈、直流反馈和交流反馈、局部反馈和级间反馈
--6.2正反馈与负反馈、直流反馈和交流反馈、局部反馈和级间反馈
-第九部分--6.2正反馈与负反馈、直流反馈和交流反馈、局部反馈和级间反馈
-6.3交流负反馈的四种组态
-第九部分--6.3交流负反馈的四种组态
-6.4有无反馈、直流与交流反馈的判断
-6.4有无反馈、直流与交流反馈的判断--作业
-6.5正反馈和负反馈的判断
-第九部分--6.5正反馈和负反馈的判断
-6.6交流负反馈四种组态的判断
-第九部分--6.6交流负反馈四种组态的判断
-6.7分立元件放大电路中反馈的分析
-第九部分--6.7分立元件放大电路中反馈的分析
-6.8负反馈放大电路的方框图及一般表达式
-第九部分--6.8负反馈放大电路的方框图及一般表达式
-6.9基于反馈系数的放大倍数的估算方法
-第九部分--6.9基于反馈系数的放大倍数的估算方法
-第九周作业
-6.10基于理想运放的电压放大倍数的计算方法
--第十部分 6.10基于理想运放的电压放大倍数的计算方法
-6.11深度负反馈放大电路电压放大倍数的讨论
--第十部分 6.11深度负反馈放大电路电压放大倍数的讨论
-6.12引入交流负反馈提高放大倍数的稳定性并改变输入、输出电阻
--6.12引入交流负反馈提高放大倍数的稳定性并改变输入、输出电阻
--第十部分 6.12引入交流负反馈提高放大倍数的稳定性并改变输入、输出电阻
-6.13引入交流负反馈展宽频带、减小非线性失真
--第十部分 6.13引入交流负反馈展宽频带、减小非线性失真
-实验8-交流负反馈对放大电路性能的影响
-6.14如何根据需求引入负反馈
--第十部分 6.14如何根据需求引入负反馈
-6.15负反馈放大电路产生自激振荡的原因及条件
--第十部分 6.15负反馈放大电路产生自激振荡的原因及条件
-6.16负反馈放大电路稳定性分析
--第十部分 6.16负反馈放大电路稳定性分析
-6.17简单滞后补偿
--第十部分 6.17简单滞后补偿
-6.18放大电路中的正反馈
--第十部分 6.18放大电路中的正反馈
-第十周作业
-期末考试
--期末作业