线性代数(1)

线性代数是大一数学基础课,被广泛地应用于自然科学和社会科学的学科中。我们将以求解线性方程组为中心问题,介绍向量、矩阵、线性空间、线性变换等基础概念和理论以及线性代数在自然科学和社会科学领域的广泛应用。

开设学校:清华大学;学科:理学、

线性代数(1)课程:前往报名学习

线性代数(1)视频慕课课程简介:

线性代数是大一数学基础课,被广泛地应用于自然科学和社会科学的学科中。我们将以求解线性方程组为中心问题,介绍向量、矩阵、线性空间、线性变换等基础概念和理论以及线性代数在自然科学和社会科学领域的广泛应用。

前往报名学习

线性代数(1)课程列表:

{{'上次学习:'+learn_list['THU07011000411']['last_leaf_name']}}

总引言

-课前引言

--课前引言

第一讲 向量及其运算

-1.1 引言

--1.1 引言

-1.2 n维向量空间中的点

--1.2 n维向量空间中的点

-1.3 向量

--1.3 向量

-1.4 向量空间的定义

--1.4 向量空间的定义

-1.5 向量空间的线性组合

--1.5 向量空间的线性组合

-1.6 向量的点积、长度

--1.6 向量的点积、长度

-1.7 向量的夹角

--1.7 向量的夹角

-1.8 两个不等式

--1.8 两个不等式

-第一讲 向量及其运算--1.9 课后作业

-第一章讲义

第二讲 矩阵与线性方程组

-2.1 矩阵与向量的乘积

--2.1 矩阵与向量的乘积

-2.2 可逆矩阵

--2.2 可逆矩阵

-2.3 线性方程组的行图和列图

--2.3 线性方程组的行图和列图

-第二讲 矩阵与线性方程组--2.4 课后作业

-第二章讲义

第三讲 高斯消元法

-3.1 Gauss消元法(上)

--3.1 Gauss消元法(上)

-3.1 Gauss消元法(下)

--3.1 Gauss消元法(下)

-3.2 消元法的矩阵表示 3.2.1 消去矩阵

--3.2 消元法的矩阵表示 3.2.1 消去矩阵

-3.2 消元法的矩阵表示 3.2.2 置换阵

--线性代数03++3.2.2置换阵

-3.2 消元法的矩阵表示 3.2.3 初等行(列)变换和初等矩阵

--线性代数03++3.2.3初等行列变换和初等矩阵

-第三讲 高斯消元法--3.3 课后作业

-第三章讲义

第四讲 矩阵的运算

-4.1 矩阵

--4.1 矩阵

-4.2 矩阵的加法和数乘

--4.2 矩阵的加法和数乘

-4.3 矩阵的乘法

--4.3 矩阵的乘法

-4.4 矩阵的乘法的性质

--4.4 矩阵的乘法的性质

-4.5 矩阵的方幂

--4.5 矩阵的方幂

-4.6 关于矩阵乘法的引入

--4.6 关于矩阵乘法的引入

-4.7 分块矩阵

--4.7 分块矩阵

-4.8 矩阵的转置

--4.8 矩阵的转置

-第四讲 矩阵的运算--4.9 课后作业

-第四章讲义

第五讲 矩阵的逆

-5.1 可逆矩阵的定义

--5.1 可逆矩阵的定义

-5.2 矩阵可逆的性质

--5.2 矩阵可逆的性质

-5.3 初等矩阵的逆

--5.3 初等矩阵的逆

-5.4 Gauss-Jordan消元法求A的逆

--5.4 Gauss-Jordan消元法求A的逆

-5.5 矩阵可逆与主元个数

--5.5 矩阵可逆与主元个数

-5.6 下三角矩阵的逆

--5.6 下三角矩阵的逆

-5.7 分块矩阵的消元和逆

--5.7 分块矩阵的消元和逆

-第五讲 矩阵的逆--5.8 课后作业

-第五章讲义

第六讲 LU分解

-6.1 LU分解

--LU分解

-6.2 用LU分解解线性方程组

--用LU分解解线性方程组

-6.3 消元法的计算量

--消元法的计算量

-6.4 LU分解的存在性和唯一性

--LU分解的存在性和唯一性

-6.5 对称矩阵的LDL^T分解

--对称矩阵的LDL^T分解

-6.6 置换矩阵

--置换矩阵

-6.7 PA=LU分解

--PA=LU分解

-第六讲 LU分解--6.8 课后作业

-第六章讲义

第七讲 向量空间

-7.1 引言

--7.1 引言

-7.2 向量空间和子空间

--7.2 向量空间和子空间

-7.3 列空间和零空间

--7.3 列空间和零空间

-7.4 阶梯形

--7.4 阶梯形

-第七讲 向量空间--7.5 课后作业

-第七章讲义

第八讲 求解齐次线性方程组

-8.1 引言

--8.1 引言

-8.2 基础解系

--8.2 基础解系

-8.3 简化行阶梯形的列变换

--8.3 简化行阶梯形的列变换

-第八讲 求解齐次线性方程组--8.4 课后作业

-第八章讲义

第九讲 求解非齐次线性方程组

-9.1 复习

--9.1 线性代数复习

-9.2 求特解

--9.2 线性代数求特解

-9.3 解的一般性讨论

--9.3 解的一般性讨论

-第九讲 求解非齐次线性方程组--9.4 课后作业

-第九章讲义

第十讲 线性无关、基与维数

-10.1 引言

--引言

-10.2 n维空间的坐标系

--10.2 +n维空间的坐标系

-10.3 无关性、基与维数

--10.3 无关性、基与维数

-10.4 无关性、基与维数的性质

--10.4 无关性、基与维数的性质

-10.5 关于秩的不等式

--10.5 +关于秩的不等式

-第十讲 线性无关、基与维数--10.6 课后作业

-第十章讲义

第十一讲 四个基本子空间的基和维数

-11.1 四个基本子空间的基

--11.1

-11.2 维数公式

--11.2

-11.3 例题

--11.3

-第十一讲 四个基本子空间的基和维数--11.4 课后作业

-第十一章讲义

第十二讲 四个基本子空间的正交关系

-12.1 引言

--12.1

-12.2 四个子空间的正交性

--12.2

-12.3 正交补

--12.3

-12.4 Ax=b在行空间中的唯一性

--12.4

-第十二讲 四个基本子空间的正交关系--12.5 课后作业

-第十二章讲义

第十三讲 正交投影

-13.1 引言

--13.1 引言

-13.2 点在直线和平面上的投影

--13.2 点在直线和平面上的投影

-13.3 一般情形

--13.3 一般情形

-第十三讲 正交投影--13.4 课后作业

-第十三章讲义

第十四讲 最小二乘法

-14.1 复习

--14.1 复习

-14.2 最小二乘法

--14.2 最小二乘法

-14.3 最小二乘法的应用:曲线拟合

--14.3 最小二乘法的应用:曲线拟合

-第十四讲 最小二乘法--14.4 课后作业

-第十四章讲义

第十五讲 Gram-Schmidt正交化

-15.1 引言

--15.1 引言

-15.2 正交向量组和正交矩阵

--15.2 正交向量组和正交矩阵

-15.3 Gram-Schmidt正交化过程

--15.3 Gram-Schmidt正交化过程

-15.4 QR分解

--15.4 QR分解

-第十五讲 Gram-Schmidt正交化--15.5 课后作业

-第十五章讲义

第十六讲 行列式的基本性质

-16.1 引言

--16.1 引言

-16.2 二阶行列式的几何含义

--16.2 二阶行列式的几何含义

-16.3 一般行列式的定义

--16.3 一般行列式的定义

-16.4 行列式和初等变换

--16.4 行列式和初等变换

-第十六讲 行列式的基本性质--16.5 课后作业

-第十六章讲义

第十七讲 行列式的计算

-17.1 行列式计算公式与展开定理

--17.1 行列式计算公式与展开定理

-17.2 典型例题

--17.2 典型例题

-第十七讲 行列式的计算--17.3 课后作业

-第十七章讲义

第十八讲 Cramer法则及行列式的几何意义

-18.1 引言

--18.1 引言

-18.2.1 求逆矩阵公式

--18.2.1 求逆矩阵公式

-18.2.2 线性方程组的公式解

--18.2.2 线性方程组的公式解

-18.3 计算有向长度、面积和体积

--18.3 计算有向长度、面积和体积

-18.4 和QR分解的联系

--18.4 和QR分解的联系

-第十八讲 Cramer法则及行列式的几何意义--18.5 课后作业

-第十八章讲义

第十九讲 特征值与特征向量

-19.1 引言和定义

--default

-19.2 例

--default

-19.3 特征值的性质

--default

-第十九讲 特征值与特征向量--19.4 课后作业

-第十九章讲义

第二十讲 矩阵的对角化

-20.1 矩阵可对角化的条件

--default

-20.2 特征值的代数重数和几何重数

--default

-20.3 矩阵可对角化的应用

--default

-20.4 同时对角化

--default

-20.5 小结

--default

-第二十讲 矩阵的对角化--20.6 课后作业

-第二十章讲义

第二十一讲 特征值在微分方程中的应用

-21.1 引言

--21.1 引言

-21.2 A可对角化的情形

--21.2 A可对角化的情形

-21.3 矩阵的指数函数

--21.3 矩阵的指数函数

-21.4 二阶常系数线性微分方程

--21.4 二阶常系数线性微分方程

-21.5 微分方程的稳定性

--21.5 微分方程的稳定性

-第二十一讲 特征值在微分方程中的应用--21.6 课后作业

-第二十一章讲义

第二十二讲 实对称矩阵

-22.1 实对称矩阵的特征值与特征向量

--22.1 实对称阵的特征值与特征向量

-22.2 实对称阵正交相似于对角阵

--22.2 实对称阵正交相似于对角阵

-22.3 实对称阵特征值与主元的关系

--22.3 实对称阵特征值与主元的关系

-22.4 小结

--22.4 小结

-第二十二讲 实对称矩阵--22.5 课后作业

-第二十二章讲义

结束语

-总结和预告

--13D9C08E4E7858C09C33DC5901307461

线性代数(1)开设学校:清华大学

线性代数(1)授课教师:

马辉-教授-清华大学-

马辉博士,教授,2000年于北京大学数学学院获得理学博士学位,先后在清华大学、美国麻州州立大学Amherst分校作博士后研究。2004年6月起在清华任教。研究方向为微分几何。自2011年参加数学系与电子系的课程改革和共建项目,连续5个学期担任电子系大一学生的线性代数教学工作。

徐帆-副教授-清华大学-

徐帆博士,副教授,2007年清华大学数学系获得理学博士学位,2009年在德国Bielefeld大学做洪堡博士后研究。2010年起,开始讲授线性代数本科课程。自2011年起担任电子系大一学生的线性代数教学工作。

也许你还感兴趣的课程:


  1. 化学反应工程(2021秋)

  2. 大学物理(2021秋)

  3. 文献学概论(2021秋)

  4. 普通化学(2021秋)

  5. 电路与电子技术(2021秋)

  6. 核反应堆物理分析(上)(2021秋)

  7. 服装史(2021秋)

  8. Surgery(Round 2)

  9. 马克思主义基本原理概论(2021秋)

  10. 创新创业基础(2021秋)

  11. 线性代数(1)(2021秋)

  12. 走进医学(2021秋)

  13. 微积分——极限理论与一元函数(2021秋)

  14. 中医与诊断-学做自己的医生(2021秋)

  15. 大学生心理健康教育(2021秋)

  16. 决胜移动互联网:创业者的商业模式课(2021秋)

  17. 大学历史与文化(2021秋)

  18. C++语言程序设计进阶(2021秋)

  19. 现代生活美学——插花之道(2021秋)

  20. 有机化学(2021秋)
© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。