
本课程专为MOOC设计,讲授常规理工科微积分的前半部分(一元微积分)。以中英文对照的方式讲授,并使用以英文为主的教材和学习资料。
开设学校:清华大学;学科:理学、
本课程专为MOOC设计,讲授常规理工科微积分的前半部分(一元微积分)。以中英文对照的方式讲授,并使用以英文为主的教材和学习资料。
-Unit 1 Review of Real Numbers (回顾实数)
--Review of Real Numbers (回顾实数)
--Exercise1-1
-Unit 2 Exponentiations, Logarithms and Sets (指数、对数与集合)
--Exponentiations, Logarithms and Sets (指数、对数与集合)
--Exercise 1-2
-Unit 3 Limit Points, Open and Closed Sets (聚点、开集与闭集)
--Limit Points, Open and Closed Sets (聚点、开集与闭集)
--Exercise-1-3
-Unit 4 Bounds and Completeness (有界性与完备性)
--Bounds and Completeness (有界性与完备性)
--Exercises-1-4
-Unit 5 Complex Number System, Algebraic and Transcendental Numbers (复数、代数数与超越数)
--Complex Number System, Algebraic and Transcendental Numbers (复数、代数数与超越数)
--Exercise-1-5
-章节测验1
--章节测试1
-Unit 1 Limit of a Sequence (数列的极限)
--Exercises-2-1
-Unit 2 Theorems on Limits of Sequences (数列极限定理)
--Theorems on Limits of Sequences (数列极限定理)
--Exercises-2-2
-Unit 3 Infinity and Bounded Monotone Sequences (无穷大和单调有界数列)
--Infinity and Bounded Monotone Sequences (无穷大和单调有界数列)
--Exercises-2-3
-Unit 4 Limit Superior and Limit Inferior (上极限和下极限)
--Limit Superior and Limit Inferior (上极限和下极限)
--Exercises-2-4
-Unit 5 Nested Intervals Theorem and Cauchy’s Convergence Criterion (区间套定理和柯西收敛准则)
--Nested Intervals Theorem and Cauchy’s Convergence Criterion (区间套定理和柯西收敛准则)
--Exercises-2-5
-章节测验2
--章节测试2
-Unit 1 Functions and Graphs (函数与图像)
--Functions and Graphs (函数与图像)
--Exercises-3-1
-Unit 2 Algebraic Function,Transcendental Functions and Inverse Trigonometric Functions (代数函数,超越函数与反三
-- Algebraic Function,Transcendental Functions and Inverse Trigonometric Functions(代数函数,超越函数与反三角函数)
--Exercises-3-2
-Unit 3 Hyperbolic Functions and Inverse Hyperbolic Functions (双曲函数与反双曲函数)
--Hyperbolic Functions and Inverse Hyperbolic Functions(双曲函数与反双曲函数)
--Exercises-3-3
-Unit 4 Maximum and Minimum, Increasing and Decreasing (极大值与极小值,单调增与单调减)
--Maximum and Minimum, Increasing and Decreasing (极大值与极小值,单调增与单调减)
--Exercises-3-4
-Unit 5 Limits of Functions (函数的极限)
--Exercises-3-5
-Unit 6 Infinity (无穷)
--Exercises-3-6
-Unit 7 Theorems on Limits and Special Limits (极限相关定理与特殊极限)
--Theorems on Limits and Special Limits (极限相关定理与特殊极限)
--Exercises-3-7
-Unit 8 Continuities (连续性)
--Exercises-3-8
-Unit 9 Theorems on Continuity (关于连续性的定理)
--Theorems on Continuity (关于连续性的定理)
--Exercises-3-9
-Unit 10 Piecewise Continuity, Uniform Continuity, and Discontinuities (分段连续性, 一致连续性与不连续性)
--Piecewise Continuity, Uniform Continuity, and Discontinuities (分段连续性, 一致连续性与不连续性)
--Exercises-3-10
-Unit 11 Infinitesimals and Bounded Quantities (无穷小量与有界量)
--Infinitesimals and Bounded Quantities (无穷小量与有界量)
--Exercises-3-11
-章节测验3
--章节测试 3
-Unit 1 Basics of Derivatives (导数基本定义)
--Basics of Derivatives (导数的基本定义)
--Exercise-4-1
-Unit 2 Differentiability on Intervals, Piecewise Differentiability and Differentials (区间上的可微性,逐段可微性与
--Differentiability on Intervals, Piecewise Differentiability and Differentials (区间上的可微性,逐段可微性与微分)
--Exercise-4-2
-Unit 3 Basic Methods of Differentiation (基本求导方法)
--Basic Methods of Differentiation (基本求导方法)
--Exercise-4-3
-Unit 4 Derivatives of Commonly Used Functions (常见函数求导)
--Derivatives of Commonly Used Functions (常见函数求导)
--Exercise-4-4
-Unit 5 Higher Order Derivatives and Mean Value Theorem (高阶导数与中值定理)
--Higher Order Derivatives and Mean Value Theorem (高阶导数与中值定理)
--Exercise-4-5
-Unit 6 L'Hospital's Rules (洛必达法则)
--Exercise-4-6
-Unit 7 The First and Second Derivative Tests (导数判别法)
--The First and Second Derivative Tests (导数判别法)
-Unit 8 The Taylor Formula (泰勒公式)
--Exercise-4-8
-章节测验 4
--章节测试4
-Unit 1 Definite Integrals and Numerical Methods (定积分与数值方法)
-- Definite Integrals and Numerical Methods (定积分与数值方法)
- Exercise 5-1
-Unit 2 Properties of the Definite Integrals and the Fundamental Theorem of Calculus (定积分的性质与微积分基本定理)
--Properties of the Definite Integrals and the Fundamental Theorem of Calculus (定积分的性质与微积分基本定理)
--Exercise-5-2
-Unit 3 Integrals of Elementary Functions and Integration by Substitution (初等函数的积分,换元法)
--Integrals of Elementary Functions and Integration by Substitution (初等函数的积分,换元法)
--Exercise-5-3
-Unit 4 Integration by Parts and Special Techniques(分部积分法与特殊技巧)
--Integration by Parts and Special Techniques(分部积分法与特殊技巧)
--Exercise-5-4
-Unit 5 Integrations of Rational Fractions and Trigonometrical Rational Functions(有理分式函数与三角有理函数的积分)
-- Integrations of Rational Fractions and Trigonometrical Rational Functions(有理分式函数与三角有理函数的积分)
--Exercise-5-5
-Unit 6 Arc Length(弧长)
--Exercise-5-6
-Unit 7 Areas and Volumes(面积与体积)
--Exercise-5-7
-章节测验5
--章节测试5
-课程讲义
陈酌,清华大学数学系副教授,主要研究数学物理和微分几何。曾在国内外多所高校任教,面向不同的学生讲授各类数学基础课。为适应当前高水平大学的教育理念和教学内容的要求,在教学方法和技巧方面不断学习和改进。对承担所有的教学任务和课程,都追求教学过程的精益求精,打造精品课程。近年来,为适应我校本科生教育教学国际化的发展与创新,参加了数学系和电子系等课程改革共建项目,多次讲授使用国外原版教材的双语课程 --- 微积分,复变函数与数理方程,为此付出很大努力。其教学成绩也得到学生和相关院系的认可。曾获得2010年清华大学青年教师教学基本功比赛一等奖,北京市青年教师教学基本功比赛二等奖,2012年廖凯原奖教金。
林润亮,清华大学数学系副教授,主要研究数学物理中的可积系统理论。曾在欧美等国家的学术机构从事研究工作,曾获北京市数学会优秀青年论文二等奖。近年来,主要承担大学基础课《微积分》及《线性代数》的教学工作。合作编写的教材《线性代数与几何(上)(下)》(清华大学出版社)曾获清华大学优秀教材一等奖。