当前课程知识点:Learn Statistics with Ease > Chapter 4 Time Series Analysis > 4.6 The season fluctuation analysis of time series > 4.6.1 Seasonal change analysis: the same period average method 季节变动分析:同期平均法
返回《Learn Statistics with Ease》慕课在线视频课程列表
返回《Learn Statistics with Ease》慕课在线视频列表
好 同学们现在我们进入
Okay, now let's start
第八讲内容
Lecture 8
季节变动的测定
measurement of seasonal variation
那在这一讲内容中
In this lecture
我们说季节变动的测定
mainly three parts are included
主要包括以下三个方面的内容
for measurement of seasonal variation
第一个内容是这个季节变动
The first part
这个测定的目的
is the purpose of measuring seasonal variation
第二个内容是
The second part is on
季节变动的分析方法与原理
the analysis methods and principles of seasonal variation
第三个内容是季节变动的一个调整
The third part is on the adjustment of seasonal variation
首先我们来看一看
First, let's look at
季节变动及其测定的目的
seasonal variation and the purpose of its measurement
那在这个长期趋势测定的过程中
In the measurement of secular trend
我们有提到
we have mentioned that
它是一个最主要的因素
secular trend is a major factor
那在这个时间数列分析过程中
As for the analysis of time series
除了长期因素以外的话
besides secular trend
我们提到第二个因素特别重要
the second factor which is particularly important
就是我们提到的
is what we've mentioned
今天这一讲中要提到的
seasonal variation, which will be discussed
季节变动这个因素
in this lecture today
那季节变动的因素
Seasonal variation
主要是指的由于这个自然季节
mainly refers to the changes with seasons
气侯条件或者人文习惯
reflecting in the natural seasonal phenomena
季节的一个变化情况
climate conditions or human habits
导致时间数列
As a result
随着这个季节更替
As the time pass
而呈现出一个周期性的
shows periodic changes
一个变化情况
with the seasons
那我们说 这个季节周期
As for seasonal cycles
在我们的意识当中
in our knowledge
主要有哪些季节周期呢
what are the major seasonal cycles
我们说通常是以年为周期
Usually the seasonal cycles are annual cycles
或者是以月 周 日 季度
based on cycles in month, week, day and quarte
为周期的一些准季节变动
or some quasi-seasonal changes
那我们注意到
Then
季节变动的特点是什么呢
what are the features of seasonal variation
它是有规律的一些变动
It is regular change
那这种季节的规律性
The regularity based on seasons
就会体现在一定周期内
is reflected in repetitive changes
经济指标的一个重复的
of economic indicators
一个变化过程
within a certain cycle
那这个重复变化过程
The process of such repetitive changes
最后展示出来
finally demonstrated
或者说显现出来就是
in each cycle
每个周期的变化大体相同
is roughly the same
最大周期为一年
The maximum period of a cycle is one year
那对于这个季节变动
The purpose of measuring seasonal variation
测定的目的
is mainly to
主要是确定现象过去的
determine the laws of seasonal variation
一个季节变化的规律
of a phenomenon in the past
消除时间数列中
to eliminate the influences of seasonal factors
一个季节因素的一个影响
in the time series
我们看看 如何来进行分析
Let's see how to
这个季节变动呢
analyze seasonal variation
我们一般是将季节变动规律
Generally, the laws of seasonal variation
归纳成一种典型的季节模型
are summarized and turned into a typical seasonal model
然后季节模型由季节指数所组成
and this model is composed of seasonal exponents
这些季节指数的平均数等于100%
The average of these seasonal exponents shall be equal to 100%
而根据这个季节指数以及平均数
The seasonal variation is determined
100%的偏差程度
based on the deviation
来测定这个季节变动的一个程度
of seasonal exponents from the average 100%
所以 如果现象没有季节变动的话
So, if there is no seasonal variation in a phenomenon
各期季节组织应该等于100%
the seasonal exponents of each period shall be equivalent to 100%
也就是意味着
which means that
如果一个月或者是季度
if there is significant seasonal variation
有明显季节变化的话
in a month or a quarter
那我们说 各期这个季节指数
then we say, the seasonal exponent of each period
就应该大于或者是小于100%
shall be greater than or less than 100%
来 我们看一看
Let's see
对于这一个季节指数
the specific steps
具体的计算的这个
for the calculation
步骤是怎么样的呢
of seasonal exponents
我们看到第一步
The first step is
它是反映季节变动的一个相对数
to figure out a relative number that reflects the seasonal variation
它是以全年 月
It is figured out
或者季的资料的平均数为基础计算的
based on the average of the yearly, monthly or quarterly data
平均数等于月度的这个指数之和
The average is equivalent to the sum of monthly exponents
等于1200%
which is equal to 1200%
如果是月度的指数的话
For monthly exponents
它之和等于1200%
the sum is equivalent to 1200%
如果是季度指数之和的话
For quarterly exponents
等于400%
the sum is equivalent to 400%
我们说指数越远离其平均数
The bigger the deviation of an exponent from its average
则表现的这个季节变动的
the greater
变化程度是越大的
the seasonal variation is
而计算方法有按季度计算
It can be calculated by quarter
也有按月度计算
or by month
好 那我们看到具体的
Okay, let's see the specific
这个计算方法
calculation process
如何按月度或者是按季度
in which the seasonal exponents
来计算这个季节指数
are figured out by month or by quarter
首先我们看到第一步
First of all, let's see the first step
要根据原时间数列
Based on the original data of time series
通过简单平均计算出
we work out the monthly or quarterly average
同月或者同季的一个平均数
using the method of simple average
然后对所有的这个经济
Then, we figure out a total average
时间数列指标
of this time series
算一个总的平均数
for the economic indicator
那计算出了总的平均数
Based on the overall average and
计算出了同月或者同季平均数
the monthly or quarterly average
基础上
we can further figure out
我们进一步来计算这个季节指数
the seasonal exponent
那季节指数等于什么呢
What is the seasonal exponent equivalent to
等于同月 同季平均数
It is equal to the monthly or quarterly average
除以总的月平均数 季平均数
divided by the total monthly or quarterly average
乘以100%
and multiplied by 100%
得到就是我们的季节指数
Finally, the seasonal exponent is obtained
那我们现在看一看
Here is
具体的一个例子
a specific example
我们说某房地产商品
The sales revenue data
它一到四季度的销售额情况
of a real estate product from the first to the fourth quarter
如下所示
are shown as below
那我们看到 它的这个数值
These are the values
是一季度 二季度 三季度 四季度
for the first quarter, second quarter, third quarter and fourth quarter
首先的话 我们根据刚刚这个
First, let's follow
具体的步骤
the specific steps discussed just now
第一我们要算一个
First, we need to figure out
同季的一个平均数
the average for each quarter
那这里的话 我们看到
So here we see that
得到的同季平均数是多少呢
the quarterly averages obtained are
等于19 25 8
19, 25 and 8
而第二步的话
In the second step
我们算一个总的平均数
let's figure out
总的平均数等于多少
the total average
总的平均数等于15.75
which is equal to 15.75
在计算出了同季平均数
After working out the quarterly average
和总平均数的基础上
and total average
我们进一步来计算这个季节比率
let's we further figure out the seasonal ratio
那季节比率等于每一个季度的
The seasonal ratio is equal to
平均数除以总的平均数
the average of each quarter divided by the total average
最后得到120.63% 158.73%
and the results are 120.63%, 158.73%
50.79% 69.84%
50.79% and 69.84%
那我们观察这几个季节指数
Then we observe the seasonal exponents
一季度 二季度 三季度 四季度
for the first quarter, second quarter, third quarter and fourth quarter
回到刚刚我们的定义当中
Let's return to its definition
或者刚刚那个特点当中
or its characteristics
我们知道
As we know
这个每个季度的季节指数
the quarterly seasonal exponents
它是否存在说
may have a very large deviation
有一个非常大的一个变化幅度呢
from the average seasonal exponent
我们说 刚刚有提到
As we've just mentioned
如果说季度比值的话
if the quarterly ratio
是等于100%的话
is equal to 100%
我们认为什么呢
that is, if the ratio of the quarterly seasonal exponent to
我们认为如果季节指数
the average seasonal exponent
季度指数它等于100%
is equal to 100%
我们认为它是没有一个变化的趋势
we believe that the trend is flat
如果它大于100%
If the ratio is greater than 100%
或小于100%的话
or less than 100%
我们都认为
we'll think that
它有一个季节因素影响在里面
there is seasonal variation in it
那计算出这四个指数
After figuring out the four exponents
把它一相加 我们发现
we add them together
它有一个
and then we find
非常大的一个问题是什么呢
there is a very big problem
我们发现最后加总它这个数字
We see that the final sum
它不等于400%
is not equal to 400%
这跟我们刚刚所提到的
There is a deviation
由季节同季 计算出来的指数
from the total exponent which is
加总应该等于400%
the sum of all exponents in the same season
它出现一个偏差
which should be 400%
那就回到我们最后一部分内容
Now we go back to the last part of this lecture
叫调整
which is about adjustment
如果说季节指数
When the seasonal exponent
它不等于400%或者说月度指数
is not equal to 400%, or the monthly exponent
它不等于1200%的时候
is not equal to 1200%
我们做一个什么处理呢
what shall we do
那我们要通过这个
In this case, we need to make adjustments
下一个内容调整系数
through the adjustment coefficient
来进行调整
which we are going to discuss next
调整系数调整以后的话
After making adjustment via the adjustment coefficient
我们会发现
we see
它根据调整系数的公式是什么呢
the formula has changed after using the adjustment coefficient
它等于原来的这个平均指数
It is now equal to the original average exponent
乘以调整系数得到的
multiplied by the adjustment coefficient
就是调整过后的这个季节指数
which actually is the seasonal exponent after adjustment
对于月度资料
For monthly data
如果全年12个月的季节指数之和
if the sum of seasonal exponents for the 12 months of the year
不等于1200%
is not equivalent to 1200%
则应计算调整系数进行调整
then adjustment shall be made by using the adjustment coefficient
而对于季度资料
For quarterly data
如果四个季度指数之和
if the sum of exponents for the four quarters
不等于400%
is not equivalent to 400%
也应进行调整
then adjustment shall be made, too
我们看到调整系数的公式
We see the formula for the adjustment coefficient
等于1200%或者400%除以
is equivalent to 1200% or 400% divided by
各月或各季季节比例之和
the sum of the seasonal ratios of each month or season
假定现在资料计算的
We assume that the sum
12个月的这个季节指数之和
of seasonal exponents of 12 months figured out
不等于1200%
is not equivalent to 1200%
则每个月的季节指数
then the seasonal exponents of each month
要分别进行调整
shall be adjusted separately
若其中一个月的原季节指数为A
If the original seasonal exponent of one of the months is A
则调整完的季节指数为A′
then the seasonal exponent after adjustment is A′
那我们说A′与原季节指数A
What is the association of A′ with the original seasonal exponent A
及调整系数的关系为什么呢
and the adjustment coefficient
(公式如上)
(formula as the above)
我们再看一个新的例子
Here is another example
我们会发现
Let's see
如果这个时候
Here if
房地产商品的
the sales revenue of real estate commodities
这个三年的销售情况如下
for three years is as the following
然后让我们来计算一个
and we are required to figure out the
季节指数的话
seasonal exponents
我们发现 第一步的话
we see, the first step is to
同样还是算这个同季的平均
figure out the average for each quarter
就我们发现同季平均中
We see the average
第一个季度是6.33
for the first quarter is 6.33
第二个季度是8
for the second quarter is 8
第三个季度16.33
for the third quarter is 16.33
第四个季度是20
and for the fourth quarter, it is 20
最后我们发现
Finally, we can
总的平均数是多少
figure out the total average
在这里我们看到
Here we see
这个图表中有多少个数据
how many data are there in this graph
我们说三年四季度
There are totally 12 data corresponding to
总共有12个数据
4 quarters per year for three years
那所以在总个的
So we have the sum
这个经济指标之和基础上
of the total economic indicator
除以12得到它这个平均数
divided by 12 and we obtain
等于12.67
an average of 12.67
那我们看到
We see
在这样的一个基础上
based on this
再求这个季节指数的话
we can figure out
我们得到的这个季节指数
the seasonal exponents
四个季度季节指数
The four quarterly seasonal exponents
分别如下所示
are shown as below
那我们在前一个基础上我们看看
Based on this, let's see
它这个季节指数
if the sum of these quarterly seasonal exponents
加总是否等于400呢
is equivalent to 400
我们去进行加总发现
After adding them together
它也出现一个问题
we see there is a problem
是399.84%
that the result we get is 399.84%
它跟400也是有一段距离的
There is also a deviation from 400
那是否也需要通过
Shall we make an adjustment
调整系数来进行调整
using the adjustment coefficient
那我们说每一个季节指数
We say, the general steps
它调整的一般步骤是
for making adjustment for exponent of each quarter
原始的这个指数比上x
is the ratio of the original exponent to X
x就是我们假定调整后的这个指数
and X is the assumed exponent after adjustment
等于什么呢
So here
等于399.84%比上400%
it is the ratio of 399.84% to 400%
那我们说
So, we say that
这个X求出来以后的话
this X is the new exponent
就是我们提到的
after adjustment
新的调整过后的指数
as we've mentioned
我们发现 调整完以后
We see, after the adjustment
下面表格中
the red column
红色这一列显示的
of the table below
就告诉我们 调整完以后
shows that the total exponent
我们最后加总起来
after adjustment
得到就是400%
is 400%
好 那我们如果是
Okay, so what if it is a monthly indicator
碰到这个月度指标也同样如此
It shall be the same
只不过月度指标的话
Only that for monthly indicator
我们发现
we see
我们不是跟400%进行比较
it is not compared with 400%
我们就应该跟什么进行比较呢
So, what shall it be compared with
我们说月份的话
We say, for monthly indicator
是一共有12个月
there are 12 months in total
所以我们就应该
So here we shall
跟1200%来进行比较
compare it with to 1200%
那我们看到
So, here
在这里有一个总结
let's make a summary
我们说对于这个季节指数和分析
For seasonal exponent and its analysis
一般来讲
generally speaking
对于这种季节指数
when seasonal exponent is used for
分析的时间序列的话
analyzing a time series
它是不存在长期趋势和循环变动的
the secular trend and cyclical variation are not considered
如果说资料它存在这个
If the data shows
上升的长期趋势的话
an upward secular trend
则我们说
then we say that
季节指数在年末的季节指数
the seasonal exponent at the end of the year
它要明显大于年初
is significantly greater than that at the beginning of the year
如果说资料
If the data
它存在一个下降的趋势的话
shows a downward trend
那我们说
then we say that
它有一个年末
the exponent at the end of the year
要明显小于年初这样一个趋势
is significantly smaller than that at the beginning of the year.
那我们看看
Let's see
现在我们这个例子当中
in this example
我们能不能观察一下看
Let's observe and see
它究竟是一个上升趋势
whether it is an upward trend
还是一个下降趋势
or a downward trend
那我们发现
As we can see
它这个一季度 二季度 三季度 四季度
the changing process of the indicator
这个指数的一个变化过程
in the first quarter, second quarter, third quarter and fourth quarter
它明显是一个上升趋势
shows an obvious upward trend
好 这是我们看到的
Well, this is all for
这个季节指数测定的所有内容
the determination of seasonal exponent
-1.1 Applications in Business and Economics
--1.1.1 Statistics application: everywhere 统计应用:无处不在
-1.2 Data、Data Sources
--1.2.1 History of Statistical Practice: A Long Road 统计实践史:漫漫长路
-1.3 Descriptive Statistics
--1.3.1 History of Statistics: Learn from others 统计学科史:博采众长
--1.3.2 Homework 课后习题
-1.4 Statistical Inference
--1.4.1 Basic research methods: statistical tools 基本研究方法:统计的利器
--1.4.2 Homework课后习题
--1.4.3 Basic concepts: the cornerstone of statistics 基本概念:统计的基石
--1.4.4 Homework 课后习题
-1.5 Unit test 第一单元测试题
-2.1Summarizing Qualitative Data
--2.1.1 Statistical investigation: the sharp edge of mining raw ore 统计调查:挖掘原矿的利刃
-2.2Frequency Distribution
--2.2.1 Scheme design: a prelude to statistical survey 方案设计:统计调查的前奏
-2.3Relative Frequency Distribution
--2.3.1 Homework 课后习题
-2.4Bar Graph
--2.4.1 Homework 课后习题
-2.6 Unit 2 test 第二单元测试题
-Descriptive Statistics: Numerical Methods
-3.1Measures of Location
--3.1.1 Statistics grouping: from original ecology to systematization 统计分组:从原生态到系统化
--3.1.2 Homework 课后习题
-3.2Mean、Median、Mode
--3.2.2 Homework 课后习题
-3.3Percentiles
--3.3 .1 Statistics chart: show the best partner for data 统计图表:展现数据最佳拍档
--3.3.2 Homework 课后习题
-3.4Quartiles
--3.4.1 Calculating the average (1): Full expression of central tendency 计算平均数(一):集中趋势之充分表达
--3.4.2 Homework 课后习题
-3.5Measures of Variability
--3.5.1 Calculating the average (2): Full expression of central tendency 计算平均数(二):集中趋势之充分表达
--3.5.2 Homework 课后习题
-3.6Range、Interquartile Range、A.D、Variance
--3.6.1 Position average: a robust expression of central tendency 1 位置平均数:集中趋势之稳健表达1
--3.6.2 Homework 课后习题
-3.7Standard Deviation
--3.7.1 Position average: a robust expression of central tendency 2 位置平均数:集中趋势之稳健表达2
-3.8Coefficient of Variation
-3.9 unit 3 test 第三单元测试题
-4.1 The horizontal of time series
--4.1.1 Time series (1): The past, present and future of the indicator 时间序列 (一) :指标的过去现在未来
--4.1.2 Homework 课后习题
--4.1.3 Time series (2): The past, present and future of indicators 时间序列 (二) :指标的过去现在未来
--4.1.4 Homework 课后习题
--4.1.5 Level analysis: the basis of time series analysis 水平分析:时间数列分析的基础
--4.1.6Homework 课后习题
-4.2 The speed analysis of time series
--4.2.1 Speed analysis: relative changes in time series 速度分析:时间数列的相对变动
--4.2.2 Homework 课后习题
-4.3 The calculation of the chronological average
--4.3.1 Average development speed: horizontal method and cumulative method 平均发展速度:水平法和累积法
--4.3.2 Homework 课后习题
-4.4 The calculation of average rate of development and increase
--4.4.1 Analysis of Component Factors: Finding the Truth 构成因素分析:抽丝剥茧寻真相
--4.4.2 Homework 课后习题
-4.5 The secular trend analysis of time series
--4.5.1 Long-term trend determination, smoothing method 长期趋势测定,修匀法
--4.5.2 Homework 课后习题
--4.5.3 Long-term trend determination: equation method 长期趋势测定:方程法
--4.5.4 Homework 课后习题
-4.6 The season fluctuation analysis of time series
--4.6.1 Seasonal change analysis: the same period average method 季节变动分析:同期平均法
-4.7 Unit 4 test 第四单元测试题
-5.1 The Conception and Type of Statistical Index
--5.1.1 Index overview: definition and classification 指数概览:定义与分类
-5.2 Aggregate Index
--5.2.1 Comprehensive index: first comprehensive and then compare 综合指数:先综合后对比
-5.4 Aggregate Index System
--5.4.1 Comprehensive Index System 综合指数体系
-5.5 Transformative Aggregate Index (Mean value index)
--5.5.1 Average index: compare first and then comprehensive (1) 平均数指数:先对比后综合(一)
--5.5.2 Average index: compare first and then comprehensive (2) 平均数指数:先对比后综合(二)
-5.6 Average target index
--5.6.1 Average index index: first average and then compare 平均指标指数:先平均后对比
-5.7 Multi-factor Index System
--5.7.1 CPI Past and Present CPI 前世今生
-5.8 Economic Index in Reality
--5.8.1 Stock Price Index: Big Family 股票价格指数:大家庭
-5.9 Unit 5 test 第五单元测试题
-Sampling and sampling distribution
-6.1The binomial distribution
--6.1.1 Sampling survey: definition and several groups of concepts 抽样调查:定义与几组概念
-6.2The geometric distribution
--6.2.1 Probability sampling: common organizational forms 概率抽样:常用组织形式
-6.3The t-distribution
--6.3.1 Non-probability sampling: commonly used sampling methods 非概率抽样:常用抽取方法
-6.4The normal distribution
--6.4.1 Common probability distributions: basic characterization of random variables 常见概率分布:随机变量的基本刻画
-6.5Using the normal table
--6.5.1 Sampling distribution: the cornerstone of sampling inference theory 抽样分布:抽样推断理论的基石
-6.9 Unit 6 test 第六单元测试题
-7.1Properties of point estimates: bias and variability
--7.1.1 Point estimation: methods and applications 点估计:方法与应用
-7.2Logic of confidence intervals
--7.2.1 Estimation: Selection and Evaluation 估计量:选择与评价
-7.3Meaning of confidence level
--7.3.1 Interval estimation: basic principles (1) 区间估计:基本原理(一)
--7.3.2 Interval estimation: basic principles (2) 区间估计:基本原理(二)
-7.4Confidence interval for a population proportion
--7.4.1 Interval estimation of the mean: large sample case 均值的区间估计:大样本情形
--7.4.2 Interval estimation of the mean: small sample case 均值的区间估计:小样本情形
-7.5Confidence interval for a population mean
--7.5.1 Interval estimation of the mean: small sample case 区间估计:总体比例和方差
-7.6Finding sample size
--7.6.1 Determination of sample size: a prelude to sampling (1) 样本容量的确定:抽样的前奏(一)
--7.6.2 Determination of sample size: a prelude to sampling (2) 样本容量的确定:抽样的前奏(二)
-7.7 Unit 7 Test 第七单元测试题
-8.1Forming hypotheses
--8.1.1 Hypothesis testing: proposing hypotheses 假设检验:提出假设
-8.2Logic of hypothesis testing
--8.2.1 Hypothesis testing: basic ideas 假设检验:基本思想
-8.3Type I and Type II errors
--8.3.1 Hypothesis testing: basic steps 假设检验:基本步骤
-8.4Test statistics and p-values 、Two-sided tests
--8.4.1 Example analysis: single population mean test 例题解析:单个总体均值检验
-8.5Hypothesis test for a population mean
--8.5.1 Analysis of examples of individual population proportion and variance test 例题分析 单个总体比例及方差检验
-8.6Hypothesis test for a population proportion
--8.6.1 P value: another test criterion P值:另一个检验准则
-8.7 Unit 8 test 第八单元测试题
-Correlation and regression analysis
-9.1Correlative relations
--9.1.1 Correlation analysis: exploring the connection of things 相关分析:初探事物联系
--9.1.2 Correlation coefficient: quantify the degree of correlation 相关系数:量化相关程度
-9.2The description of regression equation
--9.2.1 Regression Analysis: Application at a Glance 回归分析:应用一瞥
-9.3Fit the regression equation
--9.3.1 Regression analysis: equation establishment 回归分析:方程建立
-9.4Correlative relations of determination
--9.4.1 Regression analysis: basic ideas
--9.4.2 Regression analysis: coefficient estimation 回归分析:系数估计
-9.5The application of regression equation