当前课程知识点:电磁场工程应用 > 第1章 静电场 > 1.12地球的电容-电容及求解 > 地球的电容-电容及求解
大家好
下面以地球的电容为例
讨论电容及其求解
首先讨论电容的定义
考虑如图所示
两导体组成的系统两导体分别带有等量异号的电荷
正负电荷在空间中产生电场
两导体的电位存在电位差
也是电压
如果导体的带电量Q发生变化
导体间的电压U也会发生变化
导体带量Q与导体间电压U的比值
定义为该两导体系统的电容
该式中Q为带正电导体的电量
U为带正电导体的电位减去带负电导体的电位
电容则与两导体的大小、形状
相互位置及周围的介质有关
接下来讨论电容的求解
根据电容的定义
可以按以下步骤求解电容
可以先假设导体带电量为Q
那么
根据Q可求得E
再由E便可求得导体间的电压U
然后根据电容的定义便可求得电容
也可以先假设导体间的电压为U
那么根据U可求得E便由构成方程便可求得D
根据D再可求得导体表面电荷的面分布密度
再根据电荷分布求得导体的带电量Q
然后根据定义同样可求得电容
最后讨论
如果将地球看作一个导体球
其电容是多少考虑到地球外面的大气层
那么
求地球与大气层组成的系统的电容可近似等效为
求如图所示半径为a和半径为b的同心导体球壳组成的系统的电容
那么假设内外导体带电分别为Q和-Q
因此
如图所示
内外导体间距离球心r处的电场强度E可由该式求得
由E便可求得内外导体间的电压U为该式
最后
根据电容的定义
便可求得图示
电容器的电容
令该式中的a为地球的半径
b-a为大气层的厚度
那么便可求得
地球与大气层之间的电容
该式中如果b取无穷大
那么便可得到半径为a的孤立导体球的电容
该式中令a为地球半径便可求得
将地球当作一个孤立导体球时的电容
好 以上就是本次的全部内容
-0.1 场与路
--场与路
--场与路
-0.2 矢量的基本运算
--矢量的基本运算
--矢量的基本运算
-0.3 场的直观表示--场线
--场的直观表示
--场的直观表示
-0.4 标量场的方向导数和梯度
-0.5.1 矢量场的通量和散度
-0.5.2 矢量场的环量和旋度
-0.6 散度和旋度
--散度和旋度
--散度和旋度
-0.7 亥姆霍兹定理
--亥姆霍兹定理
--赫姆霍兹定理
-第0章 场的概念--第0章习题
-1.1静电场的源
--静电场的源
--静电场的源
-1.2电场强度
--电场强度
--电场强度
-1.3电位
--电位
--电位
-1.4电偶极子
--电偶极子
--电偶极子
-1.5静电场中的导体和电介质
-1.6高斯定理
--高斯定理
--高斯定理
-1.7静电场的基本方程
--静电场的基本方程
--静电场的基本方程
-1.8静电场分界面的衔接条件
-1.9静电场的边值问题及求解
-1.10镜像法
--镜像法
--镜像法
-1.11电轴法
--电轴法
--电轴法
-1.12地球的电容-电容及求解
-1.13静电力与静电能量
--静电力与静电能量
--静电力与静电能量
-1.14高电压技术中的电场问题
-第1章 静电场--第1章习题
-2.1鱼塘大量死鱼之谜-电流及电流密度
-2.2三大定律
--三大定律
--三大定律
-2.3电源电动势和局外场强
-2.4恒定电场的基本方程和边界条件
-2.5电流为什么弯曲?--恒定电场边界条件的应用
-2.6恒定电场的边值问题
-2.7恒定电场与静电场的比拟
-2.8恒定电场的工程应用:电导和部分电导
-2.9别墅起火之谜--绝缘电阻
-2.10奶牛被严重击伤,人却安全无恙?--跨步电压
-第2章 恒定电场--第2章习题
-3.1磁感应强度
--磁感应强度
--磁感应强度
-3.2磁场中的物质--磁化
-3.3安培环路定理
--安培环路定理
--安培环路定理
-3.4恒定磁场基本方程及分界面的衔接条件
-3.5.1矢量磁位及其边值问题
-3.5.2标量磁位及其边值问题
-3.6恒定磁场中的镜像法
-3.7.1自感和互感的概念
-3.7.2自感和互感的计算
-3.8恒定磁场的能量
--恒定磁场的能量
--恒定磁场的能量
-3.9.2虚位移法
--磁场力-虚位移法
--磁场力-虚位移法
-3.9.3法拉第观点
-3.10磁路
--磁路
--磁路
-第3章 恒定磁场--第3章习题
-4.1电磁感应定律
--电磁感应定律
--电磁感应定律
-4.2感应电场
--感应电场
-4.3全电流定律
--全电流定律
-4.4麦克斯韦方程组
--麦克斯韦方程
-4.5.1坡印廷定律和坡印廷矢量
-4.5.2坡印廷定理的应用
-4.6.1 动态位的引入
--动态位的引入
-4.6.2 动态位的积分解
--动态位的积分解
-4.7.1时谐电磁场及其复数表示
-4.7.2麦克斯韦方程的复数形式
-4.7.3复介电常数
-4.7.4坡印廷定理的复数形式
-4.7.5时谐场的坡印廷矢量
-4.7.6时变场计算实例
--时变场计算实例
--时变场计算实例
-第4章 时变电磁场--第4章习题
-5.1 均匀平面电磁波的概念
-5.2.1 无界理想介质中平面波的方程
-5.2.2 无界理想介质中的平面波传播特性
-5.3.1导电媒质中均匀平面波的方程
-5.3.2导电媒质中均匀平面波的传播特性
-5.3.3 4G手机能否用于煤矿的井上下通信?
--4G手机
-5.3.4潜艇通信困难?
--海水潜艇通信困难
-5.3.5良导体和良介质中均匀平面波的传播特性
-5.3.6趋肤效应
--趋肤效应
--趋肤效应
-5.3.7趋肤效应的工程应用2例
-5.4.1 电磁波的极化
--电磁波的极化
--电磁波的极化
-5.4.2 圆极化的旋向判断
--圆极化的旋向判断
--极化旋向判断
-5.4.3 极化的工程应用举例—立体电影
-第5章 均匀平面电磁波--第5章习题
-6.1.1平面电磁波对一般导电媒质的垂直入射
-6.1.2均匀电磁波对理想导体平面的垂直入射
-6.1.3均匀平面波对理想介质分界面的垂直入射
-6.1.4易拉罐增强WiFi信号?
--易拉罐增强WiFi信号?--理想导体平面对电磁波的全反射
--易拉罐增强WiFi信号?--理想导体平面对电磁波的全反射
-6.2.1平面波在理想介质分界面上的斜入射
-6.2.2雷达测距和雷达低空盲区
-6.2.3光纤的传输原理—电磁波在理想介质表面的全反射
-6.2.4电磁波在理想介质表面的全透射
-第6章 平面电磁波的反射和透射--第6章习题