当前课程知识点:控制工程基础 >  第2章 控制系统的动态数学模型 >  2.7 传递函数 >  Video

返回《控制工程基础》慕课在线视频课程列表

Video在线视频

Video

下一节:Video

返回《控制工程基础》慕课在线视频列表

Video课程教案、知识点、字幕

同学们好

欢迎来到全新一期的控制工程基础mooc课程

这一节课我们来介绍

控制系统的最重要一种数学模型

叫做传递函数

首先我们来先看传递函数的定义

在零初始条件下一个线性定常系统

的输出量与输入量的拉氏变换之比

我们就称之为这个系统的传递函数

零初始条件是指的时间t小于0的时候

输入量输出量以及它们各阶导数都为0

传递函数是表达了

系统的一个固有的特性

因而它与系统的输入信号是无关的

但是传递函数通常是不能表明

这个系统的物理特性和物理结构的

也就是说一个物理性质不同的系统

它可以有相同形式的传递函数

就像我们物理性质不同的系统

可以有相同形式的微分方程一样

下面我们先来看两个例子

第一个例子是我们前面介绍过的RC网络

我们如何来建立这个RC网络的传递函数

在前面我们已经介绍过

这个RC网络它的微分方程的表达

是这样的一个常系数的一阶微分方程

按照传递函数的定义我们令初始条件为0

把这个微分方程左右两边

都进行拉氏变换以后

就得到这样一个代数方程

传递函数的定义是说

输出象函数与输入象函数之比

就是它的传递函数

最终就可以得到它的传递函数

是RCs加1分之一

可以看到我们这个系统的传递函数

实际上它也取决于系统本身的结构和参数

与你输入信号的形式是无关的

第二个例子是质量弹簧阻尼系统

在前面我们已经建立过

这样一个系统的微分方程

是一个二阶的常系数的微分方程

同样按照传递函数的定义

我们令所有的初始条件均为0

把这样微分方程左右两边都进行拉氏变换

就得到这样的一个代数方程的形式

最终的系统的传统函数就等于

输出象函数与输入象函数之比

就等于这样的一个表达式

从这个例子也可以看到

我们系统的传递函数是只取决于

系统本身的结构和参数

跟你的输入形式是没有关系的

控制工程基础课程列表:

第1章 概论

-课程介绍1

--课程介绍1

-课程介绍2

--课程介绍2

-1.1 控制工程的发展

--控制工程的发展

-1.2 控制系统的分类

--控制系统的分类

-1.3 闭环系统的结构

--控制系统的结构

-第1章课后练习--作业

第2章 控制系统的动态数学模型

-2.1 系统的微分方程(一)

--系统的微分方程(一)

-2.2 系统的微分方程(二)

--控制系统的微分方程(二)

-2.3 Laplace变换的定义

--2.3 Laplace变换的定义

-2.4 Laplace变换的定理

--Video

-2.5 Laplace反变换

--Video

-2.6 Laplace变换法解微分方程

--Video

-2.7 传递函数

--Video

-2.8 传递函数的一般形式

--Video

-2.9 控制系统的方块图

--Video

-2.10 方块图的化简

--Video

-2.11 建立数学模型——温控箱

--Video

-2.12 方块图——直流电机

--Video

-2.13 闭环与开环传递函数

--Video

-第2章 控制系统的动态数学模型--第2章 课后习题

第3章 时域瞬态响应分析

-3.1 时域响应概述

--3.1时域响应概述

-3.2 一阶系统的瞬态响应

--3.2一阶系统的瞬态响应

-3.3 二阶系统的瞬态响应

--3.3二阶系统的瞬态响应

-3.4 极点位置与响应特性的关系

--3.4极点位置与响应特性的关系

-3.5 高阶系统的瞬态响应

--3.5高阶系统的瞬态响应

-3.6 瞬态响应性能指标

--3.6瞬态响应性能指标

-第3章 时域瞬态响应分析--第3章 课后练习

第4章 控制系统的频率特性

-4.1 频域法概述

--4.1 频率法概述

-4.2.1 频率特性的定义

--4.2.1 频率特性的定义

-4.2.2 频率特性的意义及表示形式

--4.2.2 频率特性的意义及表示形式

-4.2.3 频率特性的求取

--4.2.3 频率特性的求取

-4.3.1 典型环节的Nyquist图

--4.3.1 典型环节的Nyquist图

-4.3.2 Nyquist图的作图方法

--4.3.2 Nyquist图的作图方法

-第4章 控制系统的频率特性--第4章 课后练习(一)

-4.4.1 典型环节的Bode图

--4.4.1 典型环节的Bode图

-4.4.2 一般系统Bode图的作图方法

--4.4.2 一般系统Bode图的作图方法

-4.4.3 最小相位系统的Bode图

--4.4.3 最小相位系统的Bode图

-4.5.1 Bode图与传递函数的对应关系

--4.5.1 Bode图与传递函数的关系

-4.5.2 Bode图与传递函数的对应关系举例

--4.5.2 Bode图与传递函数的对应关系举例

-4.6 系统的开环和闭环频率特性的关系

--4.6 系统的开环和闭环频率特性的关系

-第4章 控制系统的频率特性--第4章 课后练习(二)

第5章 控制系统的稳定性分析

-5.1 控制系统的稳定性

--5.1 控制系统的稳定性

-5.2 劳斯判据

--5.2 劳斯判据

-5.3 映射定理

--5.3 映射定理

-5.4 Nyquist稳定性判据

--5.4 Nyquist稳定性判据

-5.5 Nyquist判据具体应用1

--5.5 Nyquist判据具体应用1

-5.5 Nyquist判据具体应用2

--5.6 Nyquist判据具体应用2

-5.5 Nyquist判据具体应用3

--5.7Nyquist判据具体应用3

-5.6 控制系统的相对稳定性

--5.8 控制系统的相对稳定性

-第5章 控制系统的稳定性分析--第5章 课后习题

第6章 控制系统的误差分析和计算

-6.1 闭环控制系统的稳态误差

--6.1 闭环控制系统的稳态误差

-6.2 输入引起的稳态误差1

--6.2 输入引起的稳态误差

-6.2 输入引起的稳态误差2

--6.2 输入引起的稳态误差2

-6.3 干扰引起的稳态误差

-- 6.3 扰动引起的稳态误差

-6.4 叠加动态特性与输入无关

--6.4 叠加动态特性与输入无关

-第6章 控制系统的误差分析和计算--第6章 课后练习

第7章 控制系统的综合与校正

-7.1 闭环系统瞬态响应与频率特性的关系

--7.1 闭环系统瞬态响应与频率特性的关系

-7.2 开环与闭环频率特性的关系

--7.2 开环与闭环频率特性的关系

-7.3 开环频率特性与闭环瞬态响应的关系

--7.3 开环频率特性与闭环瞬态响应的关系

-7.4 准确性及时频关系例子

--7.4 准确性及时频关系例子

-7.5 期望的开环频率特性

--7.5 期望的开环频率特性

-第7章 控制系统的综合与校正--第7章 课后练习(一)

-7.6 控制器——比例、积分

--7.6 控制器——比例、积分

-7.7 控制器——比例-积分

--7.7 控制器——比例-积分

-7.8 控制器——比例-微分

--7.8 控制器——比例-微分

-7.9 控制器——PID

--7.9 控制器——PID

-7.10 直流电机伺服系统

--7.10 直流电机伺服系统

-7.11 最优阻尼比

--7.11 最优阻尼比

-7.12 I型最优模型

--7.12 I型最优模型

-7.13 PID控制器的参数计算

--7.13 PID控制器的参数计算

-第7章 控制系统的综合与校正--第7章 课后练习(二)

第8章 计算机控制系统

-8.1 计算机控制系统的结构

--8.1 计算机控制系统的结构

-8.2 z变换

--8.2 z变换

-8.3 s平面与z平面的映射关系

--8.3 s平面与z平面的映射关系

-8.4 控制器的模拟化设计方法

--8.4 控制器的模拟化设计方法

-第8章 计算机控制系统--第8章 课后练习

Video笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。