当前课程知识点:光学工程基础 >  下篇:物理光学——在两电介质分界面上的折射和反射 >  3.2.2 光在两电介质分界面上的折射与反射 >  3.2.2 光在两电介质分界面上的折射与反射

返回《光学工程基础》慕课在线视频课程列表

3.2.2 光在两电介质分界面上的折射与反射在线视频

3.2.2 光在两电介质分界面上的折射与反射

下一节:3.2.3 菲涅耳公式

返回《光学工程基础》慕课在线视频列表

3.2.2 光在两电介质分界面上的折射与反射课程教案、知识点、字幕

那下面我们来利用前面的

这个连续条件推导出

光波入射到两电介质

表面上的一个规律

那我们知道光波

入射到电介质表面

有一部分光会反射

还有一部分光会折射下去

就产生了反射和折射现象

这个现象可以看成是

光和物质相互作用的结果

我们将从两个方面

来讨论折反射定律

首先我们来建立

一个入射面、振动面

场分量矢量取向的一个概念

什么叫入射面呢

就是光波的入射的光线

和这个界面的法线

所组成的一个平面

我们把它就叫做入射面

那振动面是指的

电场矢量的方向

也就是这个光振动的一个方向

和入射光线组成的平面

也就是这个电矢量

所在的一个平面

电矢量一般不在入射面内振动

可以将任意电矢量

分解为垂直于入射面

和平行于入射面的两个分量

我们把这两个分量

分别称为s分量和p分量

振动面相对于入射面的夹角

我们用方位角α来表示

那么相对于光的传播方向k0

所有入射、反射、折射波的电场E

传播方向k和它的磁场的

相对取向都是相同的

我们如果观察到两个场是同相

那么这里一个场量的

振幅的这个值是正值

场矢量取向与规定的正向相同

如果我们观察了两个场反相

那么就这个场量的振幅是负值

场矢量的取向

与规定的正向是相反的

那我们就可以

利用电磁场的连续条件

来讨论在界面上

光波的传播方向

振幅、相位、能量、偏振态的

一些变化情况

首先我们来推导折反射定律

先给出来入射波、反射波

折射波的三个形式

这里我们给的是它的s分量

它的振幅分别是A1s

A1s'和A2s

它的振动频率是ω1、ω1'和ω2

它的波矢是k1、k1'和k2

我们可以用前面的电场强度

切向连续的边界条件

也就是说E1t等于E2t

也就是在入射的这个点上

在入射表面上面的电场强度

和下面的电场强度是切向连续的

那我们写出来应该是什么呢

E1s加上E1s'

在z等于零处等于E2s

那么我们可以把这个z等于零代进来

我们有可以得到A1s e指数的ik点

乘以r减去ω1t

加上A1s' e指数负的ik1’

点乘以r减去ω1't

然后它是等于A2s e指数ik2点

乘以r减去ω2乘以t

因为这个式子它是

在界面上任何一点都是要成立的

任何时刻也都要成立的

所以说的话这个式子里面

首先我们可以得到

ω1必须要等于ω1’也等于ω2

也就是说入射反射折射

光波的频率要相同

同时我们可以看到k1'

点乘以r和k1点乘以r

和k2点乘以r也必须要相等

因为对于任意的r值它都要成立

这样的话我们就得到了

k1减去k1'点乘以r等于零

还有k1减去k2点乘以r等于零

这样的话我们

得到的结论就是什么

k1'、k1、k2都在入射面内

入射波、反射波、折射波、法线

它们都是共面的

那么根据k1点乘以r

等于k1'点乘以r

我们可以把这个r的

这个式子代进来

它是等于xcosα1

加上ycosβ1加上这zcosγ1的

然后同样的也可以

代入到k1'点乘以r

因为这个式子cosβ1是等于零的

cosβ1'也等于零

所以说的话我们最终可以得到

k1xcosα1等于k1'xcosα1'

又由于cosα等于sinθ1

所以我们就得到了sinθ1

等于sinθ1'

也就是θ等于θ1'

这个θ1就是入射角

θ1'就是反射角

所以在界面上反射时

反射角一定要等于入射角

下面我们来看折射定律

那就是k1点乘以l等于k2点乘以l

这时我们也把这个r表达式代进来

最终的话cosβ1等于零

cosβ2也是等于零的

这样我们就可以得到的k1xcosα1

等于k2xcosα2

那这个时候我们k1和k2之间

它有一个折射率n1和n2代入

那最终我们就得到了

n1sinθ1等于n2sinθ2

这个公式就是折射定律

对这部分做一个简单的小结

平面波在界面反射

和折射时频率不变

入射光线、反射光线

和折射光线还有法线都在入射面内

它们是共面的

从传播方向来看入射角等于反射角

入射角和折射角满足折射定律

光学工程基础课程列表:

绪论——课程内容简介

-1.1.1 课程背景和内容简介

--课程背景和内容简介

-1.1.2 光学工程的特点

--光学工程的特点

-1.1.3 本课程的学习方法

--本课程的学习方法

--外部链接

绪论——预备知识

-1.2.1 微积分基础知识

--微积分基础知识

-1.2.2 光学工程中的常用函数

--光学工程中的常用函数

-1.2.3 常用函数的运算与变换

--常用函数的运算与变换

-扩展阅读

--SPIE课程:Light in Action-Lasers,Cameras&Other Cool Stuff

--SPIE课程:Optics-Light at Work

--SPIE课程:A Day Without Photonics-A Modern Horror Story

--SPIE课程:Advice to Students from Leaders in the Optics&Photonics Community

--版权说明

上篇:应用光学——光波、光线和成像

-2.1.1 基本概念和光线传播基本定律

--基本概念和光线传播基本定律

-2.1.2 成像基本概念

--成像基本概念

-2.1.3 费马原理

--费马原理

-2.1.4 等光程成像

--等光程成像

-2.1.5 常用曲面形状

--常用曲面形状

-第一次作业--作业

上篇:应用光学——近轴光学

-2.2.1 近轴光学基本概念

--近轴光学基本概念

-2.2.2 近轴球面成像

--近轴球面成像

-2.2.3 近轴球面成像放大率

--近轴球面成像放大率

-2.2.4 物像空间及光学不变量

--物像空间及光学不变量

-2.2.5 矩阵光学简介

--矩阵光学简介

-2.2.6 矩阵光学应用

--矩阵光学应用

-第二次作业--作业

上篇:应用光学——理想光学系统

-2.3.1 理想光学系统基本概念

--2.3.1 理想光学系统基本概念

-2.3.2 理想光学系统的基点与基面

--2.3.2 理想光学系统的基点与基面

-2.3.3 图解法求像

--2.3.3 图解法求像

-2.3.4 解析法求像

--2.3.4 解析法求像

-2.3.5 理想光学系统的放大率

--2.3.5 理想光学系统的放大率

-2.3.6 理想光学系统焦距关系

--2.3.6 理想光学系统焦距关系

-2.3.7 理想光学系统组合

--2.3.7 理想光学系统组合

-2.3.8 透镜与薄透镜

--2.3.8 透镜与薄透镜

-2.3.9 远摄型光组和反远距型光组

--2.3.9 远摄型光组和反远距型光组

-第三次作业--作业

上篇:应用光学——平面反射镜与棱镜

-2.4.1 平面反射镜及双平面反射镜

--2.4.1 平面反射镜及双平面反射镜

-2.4.2 反射棱镜及其展开和平行平板成像

--2.4.2 反射棱镜及其展开和平行平板成像

-2.4.3 反射棱镜成像方向

--2.4.3 反射棱镜成像方向

-2.4.4 棱镜转动定理

--2.4.4 棱镜转动定理

-2.4.5 角锥棱镜和折射棱镜

--2.4.5 角锥棱镜和折射棱镜

-2.4.6 光学材料简介

--2.4.6 光学材料简介

-第四次作业--作业

上篇:应用光学——光学系统中的光束限制

-2.5.1 光阑简介与孔径光阑

--2.5.1 光阑简介与孔径光阑

-2.5.2 视场光阑与渐晕

--2.5.2 视场光阑与渐晕

-2.5.3 远心光路

--2.5.3 远心光路

-2.5.4 景深

--2.5.4 景深

-第五次作业--作业

补充材料:光度学与色度学基础(不占学时)

-2.6.1 光度学与色度学基础

--2.6.1 辐射度学

-2.6.2 视见函数和光度学

--2.6.2 视见函数和光度学

-2.6.3 光传播过程中光学量的变化规律

--2.6.3 光传播过程中光学量的变化规律

-2.6.4 色度学基本概念

--2.6.4 色度学基本概念

-2.6.5 CIE标准色度学系统

--2.6.5 CIE标准色度学系统

-第六次作业--作业

上篇:应用光学——像差简介

-2.7.1 球差

--2.7.1 球差

-2.7.2 色差

--2.7.2 色差

-2.7.3 子午像差和弧矢像差

--2.7.3 子午像差和弧矢像差

-2.7.4 彗差、像散、场曲、畸变

--2.7.4 彗差、像散、场曲、畸变

-2.7.5 垂轴像差、波像差

--2.7.5 垂轴像差、波像差

-2.7.6 光学传递函数

--2.7.6 光学传递函数

-第七次作业(像差)--作业

上篇:应用光学——人眼

-2.8.1 人眼的光学模型

--2.8.1 人眼的光学模型

-2.8.2 人眼的缺陷与校正

--2.8.2 人眼的缺陷与校正

-2.8.3 人眼的景深

--2.8.3 人眼的景深

上篇:应用光学——光学系统的分辨率

-2.9.1 光学系统的分辨率

--2.9.1 光学系统的分辨率

-上篇:应用光学——光学系统的分辨率(光学系统分辨率)

-2.9.2 人眼的分辨率

--2.9.2 人眼的分辨率

-上篇:应用光学——光学系统的分辨率--第八次作业(人眼)

上篇:应用光学——放大镜

-2.10.1 放大镜

--2.10.1 放大镜

-上篇:应用光学——放大镜--第八次作业(放大镜)

-2.10.2 放大镜的光束限制和视场及目镜

--2.10.2 放大镜的光束限制和视场及目镜

上篇:应用光学——望远系统

-2.11.1 望远系统

--2.11.1 望远系统

-2.11.2 望远镜的放大倍率

--2.11.2 望远镜的放大倍率

-2.11.3 望远镜的视觉放大率

--2.11.3 望远镜的视觉放大率

-2.11.4 望远镜的分辨率

--2.11.4 望远镜的分辨率

-第九次作业(望远镜)--作业

上篇:应用光学——显微系统

-2.12.1 显微镜及其放大率

--2.12.1 显微镜及其放大率

-2.12.2 显微镜的视觉放大率

--2.12.2 显微镜的视觉放大率

-2.12.3 显微镜的孔径光阑

--2.12.3 显微镜的孔径光阑

-2.12.4 显微镜的机械筒长

--2.12.4 显微镜的机械筒长

-2.12.5 显微镜的分辨率及有效放大率

--2.12.5 显微镜的分辨率

-2.12.6 显微镜的景深

--2.12.6 显微镜的景深

-2.12.7 显微镜的照明系统

--2.12.7 显微镜的照明系统

-第九次作业(显微镜)--作业

下篇:物理光学——光的电磁性质

-3.1.1 电磁场的波动性

--3.1.1 电磁场的波动性

-3.1.2 平面电磁波及其性质

--3.1.2 平面电磁波及其性质

-3.1.3 球面波与柱面波,光波辐射与辐射能

--3.1.3 球面波与柱面波,光波辐射与辐射能

下篇:物理光学——在两电介质分界面上的折射和反射

-3.2.1 电磁场的连续条件(边界条件)

--3.2.1 电磁场的连续条件(边界条件)

-3.2.2 光在两电介质分界面上的折射与反射

--3.2.2 光在两电介质分界面上的折射与反射

-3.2.3 菲涅耳公式

--3.2.3 菲涅耳公式

-3.2.4 全反射与倏逝波

--3.2.4 全反射与倏逝波

-3.2.5 金属表面的反射

--3.2.5 金属表面的反射

-3.2节课后习题--作业

下篇:物理光学——光的吸收、色散和散射

-3.3.1 光的吸收、色散和散射

--3.3.1 光的吸收、色散和散射

下篇:物理光学——光波的叠加

-3.4.1 光波的叠加

--3.4.1光波的叠加

下篇:物理光学——干涉原理及相干条件

-3.5.1 干涉原理及相干条件

--3.5.1 干涉现象与干涉条件

-3.5节课后习题--作业

下篇:物理光学——杨氏干涉实验

-3.6.1 干涉图样计算

--3.6.1 干涉图样计算

-3.6.2 分波阵面干涉装置的特点

--3.6.2 分波阵面干涉装置的特点

-3.6节课后习题--作业

下篇:物理光学——干涉条纹的对比度及其影响因素

-3.7.1 时间相干性

--3.7.1 时间相干性

-3.7.2 空间相干性

--3.7.2 空间相干性

-下篇:物理光学——干涉条纹的对比度及其影响因素

下篇:物理光学——平板的双光束干涉

-3.8.1 干涉条纹的定域

--3.8.1 干涉条纹的定域

-3.8.2 平行平板产生的等倾干涉

--3.8.2 平行平板产生的等倾干涉

-3.8.3 楔形平板产生的等厚干涉

--3.8.3 楔形平板产生的等厚干涉

-下篇:物理光学——平板的双光束干涉--3.8节课后习题

下篇:物理光学——典型的双光束干涉系统及其应用

-3.9.1 斐索干涉仪

--3.9.1 斐索干涉仪

-3.9.2 迈克尔逊干涉仪

--3.9.2 迈克尔逊干涉仪

-下篇:物理光学——典型的双光束干涉系统及其应用

下篇:物理光学—— 平行平板的多光束干涉及其应用

-3.10.1 平行平板的多光束干涉

--3.10.1 平行平板的多光束干涉

-3.10.2 F-P 干涉仪

--3.10.2 F-P 干涉仪

-3.10.3 光学薄膜基础

--3.10.3 光学薄膜基础

-3.10.4 单层膜与多层膜

--3.10.4 单层膜与多层膜

-3.10课后习题--作业

下篇:物理光学—— 光波的标量衍射理论

-3.11.1 惠更斯—菲涅耳原理

--3.11.1 惠更斯—菲涅耳原理

-3.11.2 菲涅耳—基尔霍夫衍射公式及衍射分类

--3.11.2 菲涅耳—基尔霍夫衍射公式及衍射分类

-3.11节习题--作业

下篇:物理光学—— 典型孔径的夫朗和费衍射

-3.12.1 夫朗和费衍射公式的意义

--3.12.1 夫朗和费衍射公式的意义

-3.12.2 矩孔衍射和单缝衍射

--3.12.2 矩孔衍射和单缝衍射

-3.12.3 圆孔衍射

--3.12.3 圆孔衍射

-3.12节习题--作业

下篇:物理光学—— 光学成像系统的衍射和分辨本领

-3.13.1 成像系统的分辨本领

--3.13.1 成像系统的分辨本领

-下篇:物理光学—— 光学成像系统的衍射和分辨本领

下篇:物理光学—— 多缝的夫朗和费衍射

-3.14.1 双缝与多缝的夫朗和费衍射

--3.14.1 双缝与多缝的夫朗和费衍射

-3.14.2 光栅的分光性能

--3.14.2 光栅的分光性能

-3.14.3 几种典型光栅

--3.14.3 几种典型光栅

-3.14节习题--作业

下篇:物理光学—— 菲涅耳衍射

-3.15.1 圆孔和圆屏(盘)的菲涅耳衍射

--3.15.1 圆孔和圆屏(盘)的菲涅耳衍射

-3.15.2 菲涅耳透镜

--3.15.2 菲涅耳透镜

-下篇:物理光学—— 菲涅耳衍射(菲涅耳衍射)

下篇:物理光学—— 傅立叶光学

-3.16.1 平面波的复振幅分布和空间频率、复杂复振幅及其分解

--3.16.1 平面波的复振幅分布和空间频率、复杂复振幅及其分解

-3.16.2 光波衍射的傅里叶分析方法

--光波衍射的傅里叶分析方法

-3.16.3 透镜的傅立叶变换性质

--3.16.3 透镜的傅立叶变换性质

-3.16.4 相干成像系统分析及相干传递函数

--3.16.4 相干成像系统分析及相干传递函数

-3.16节习题--作业

下篇:物理光学—— 光学信息处理

-3.17.1 非相干成像系统分析及光学传递函数

--3.17.1 非相干成像系统分析及光学传递函数

-3.17.2 阿贝成像理论、波特实验与光学信息处理

--3.17.2 阿贝成像理论、波特实验与光学信息处理

-3.17.3 全息术

--3.17.3全息术

-3.17节习题--作业

下篇:物理光学——光在晶体中传播

-3.18.1 偏振光概述

--3.18.1 偏振光概述

-3.18.2 光在晶体中的传播

--3.18.2 光在晶体中的传播

-3.18.3 单色平面波在晶体中的传播

--3.18.3 单色平面波在晶体中的传播

-3.18.4 单轴晶体中光的传播

--3.18.4 单轴晶体中光的传播

-3.18节习题--作业

下篇:物理光学——光在晶体表面的折射和反射

-3.19.1 光波在晶体表面的折射和反射

--3.19.1 光波在晶体表面的折射和反射

下篇:物理光学—— 晶体偏振器件

-3.20.1 偏振棱镜和相位延迟器(一)

--3.20.1 偏振棱镜和相位延迟器(一)

-3.20.1 偏振棱镜和相位延迟器(二)

--3.20.1 偏振棱镜和相位延迟器(二)

-3.20.2 偏振光和偏振态的琼斯矩阵表示

--3.20.2 偏振光和偏振态的琼斯矩阵表示

-3.20节课后作业--作业

下篇:物理光学——偏振光的变换和测定

-3.21.1 偏振光的变换

--3.21.1 偏振光的变换

-3.21.2 偏振光的测定

--3.21.2 偏振光的测定

-3.21节课后习题--作业

下篇:物理光学——偏振光的干涉

-3.22.1 平面偏振光的干涉

--3.22.1 平面偏振光的干涉

-3.22.2 会聚偏振光的干涉

--3.22.2 会聚偏振光的干涉

-3.22节课后习题--作业

下篇:物理光学——磁光、电光和声光效应

-3.23.1 旋光现象和磁致旋光效应(一)

--3.23.1 旋光现象和磁致旋光效应(一)

-3.23.1 旋光现象和磁致旋光效应(二)

--3.23.1 旋光现象和磁致旋光效应(二)

-3.23.2 电光效应(一)

--3.23.2 电光效应(一)

-3.23.2 电光效应(二)

--3.23.2 电光效应(二)

-3.23.3 声光效应

--3.23.3 声光效应

-下篇:物理光学——磁光、电光和声光效应--3.23节课后习题

期末考试

-期末考试--作业

3.2.2 光在两电介质分界面上的折射与反射笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。