当前课程知识点:量子力学(上) >  第一章 量子力学的历史渊源 >  1.1 普朗克的光量子假说 >  1.1.4 康普顿效应

返回《量子力学(上)》慕课在线视频课程列表

1.1.4 康普顿效应在线视频

1.1.4 康普顿效应

下一节:1.2.1 氢原子光谱和弗兰克-赫兹实验

返回《量子力学(上)》慕课在线视频列表

1.1.4 康普顿效应课程教案、知识点、字幕

那么 对于这样一个关系

有没有一个实验可以检验呢

这个实验就是

康普顿效应的实验

康普顿实验

是在1923年完成的

是观察x射线

在自由电子上的散射

这就是康普顿散射的示意图

光子沿着这个方向入射

和电子发生碰撞

假设入射光子的频率是ν

结果

光子沿着一个不同的方向

散射出去

同时电子获得

一定的反冲功能

假设散射光子的频率是ν'

实验发现

只要这个散射角θ

不等于零

散射x射线的波长

是要变长的

这里的波长就是c/ν

如果进来的波长是λ

出去的波长是λ'

那么λ'-λ

正比于一个

和散射角有关的因子

是1-cosθ

前面有一个普适常数λc

这个λc就是h/mec

me就是电子的静止质量

对于这样一个过程

经典电动力学

是怎么理解呢

按照经典电动力学的观点

光 就是电磁场的波动

一个电子

在入射光的影响之下

就会随着电磁场的波动

产生振荡

电子作为一个电荷

在它振荡的时候

又会发出自己的电磁波

这就是那个散射光

从这个角度来看

散射光的频率

应当正好等于

入射光的频率

当然

散射波的波长

也就应该等于

入射波的波长

不会发生

散射波长变长的这种现象

所以

用经典电动力学

是没有办法解释

康普顿效应的

但是

如果我们假设

这是光子和电子的碰撞过程

在这个过程当中

能量和动量是守恒的

其中

光子的能量是hν

动量是h/λ

那么

再应用能量和动量守恒

就很容易解释

上面实验结果

康普顿效应的意义

还不仅限于此

在1923年的那个时候

量子现象的很多特征

已经被人们所认识

其中一个很重要的特征

就是量子现象的几率性

这自然就提出了一个问题

象能量守恒和动量守恒

这样的基本的物理定律

也是几率性地被保持的吗

当然

对这个问题的回答

只能通过实验

而康普顿效应的实验

告诉我们

在光子和电子

相互作用的单个事件中

能量守恒和动量守恒

都是被严格遵守的

这一点对于

物理学家们认识守恒定律

具有非常重大的意义

所以 实验告诉我们

光是一种既具有波动性

又具有粒子性的物质

这称之为

光的波粒二象性

量子力学(上)课程列表:

序言

-引言

--引言

第一章 量子力学的历史渊源

-1.1 普朗克的光量子假说

--1.1.1 黑体辐射的能谱

--1.1.2 普朗克假说

--1.1.3 光电效应

--1.1.4 康普顿效应

-1.2 玻尔的原子结构模型

--1.2.1 氢原子光谱和弗兰克-赫兹实验

--1.2.2 玻尔模型

--1.2.3 索末菲量子化条件

-1.3 德布罗意的物质波假说

--1.3.1 德布罗意假说

--1.3.2 微观粒子波动性的实验

-第一章 量子力学的历史渊源--第1周作业

第二章 波函数与薛定谔方程

-2.1波函数

--2.1.1 波粒二象性的意义

--2.1.2 波函数的统计诠释

--2.1.3 波函数的归一化

--2.1.4 态叠加原理

--2.1.5 动量分布几率

--2.1.6 不确定关系

--2.1.7 力学量的平均值和力学量的算符表示

--2.1.8波函数应满足的要求

-第二章 波函数与薛定谔方程--第2周作业

-2.2 薛定谔方程

--2.2.1 薛定谔方程的引入

--2.2.2 几率守恒定律

--*2.2.3量子力学的初值问题 自由粒子的传播子

--2.2.4 定态薛定谔方程 能量本征方程

--2.2.5 非定态 薛定谔方程的一般解

--2.2.6 一般系统的薛定谔方程

--2.2.7 量子力学的表象

--2.2.8 量子力学中的测量 波包坍缩

-第二章 波函数与薛定谔方程--第3周作业

第三章 一维势场中的粒子

-3.1一维运动问题的一般分析

--3.1.1 一维定态薛定谔方程的解的一般特征

--3.1.2 关于一维定态薛定谔方程的解的基本定理

--3.1.3 一维定态的分类 束缚态和非束缚态

--3.1.4一维束缚态的一般性质

-第三章 一维势场中的粒子--第4周作业

-3.2 方势阱

--3.2.1 一维无限深势阱

--3.2.2 对称有限深方势阱

-3.3 δ函数势阱

--3.3.1 函数的定义和主要性质

--3.3.2 一维δ函数势阱中的束缚态

--3.3.3 δ函数势阱与方势阱的关系

-第三章 一维势场中的粒子--第5周作业

-3.4 线性谐振子

--3.4.1 方程的无量纲化和化简

--3.4.2 厄密多项式

--3.4.3 线性谐振子的能级和波函数

-3.5 一维散射问题

--3.5.1 一维散射问题的一般描述方法

--3.5.2 方势垒的量子隧穿

--3.5.3 方势阱的共振透射

-第三章 一维势场中的粒子--第6周作业

-*3.6 δ势的穿透

--3.6.1 δ势垒的穿透

--3.6.2 δ势阱的穿透

-*3.7 周期性势场中的能带结构

--*3.7.1 有限平移不变性,弗洛盖-布洛赫定理

--*3.7.2克勒尼希-彭尼模型,能带的形成

--第三章 一维势场中的粒子--第7周作业

第四章 力学量用算符表示

-4.1 算符及其运算

--4.1.1 基本的和导出的力学量算符

--4.1.2 线性算符

--4.1.3 算符的运算和厄密算符

--4.1.4算符的对易关系

-第四章 力学量用算符表示--第8周作业

-4.2 厄密算符的主要性质

--4.2.1 算符的本证方程

--4.2.2 厄密算符的本征值

--4.2.3 本征函数系的正交性

--4.2.4 简并情形 共同本征函数

--4.2.5 力学量的完备集

--4.2.6 一般力学量的测量几率

--4.2.7 不确定关系的准确形式

-第四章 力学量用算符表示--第9周作业

-4.3 动量本征函数的归一化

--4.3.1 动量本征函数在无穷空间中的归一化

--*4.3.2 动量本征函数的箱归一化

-4.4 角动量算符的本征值和本征态

--4.4.1角动量算符的球坐标表示

--4.4.2 角动量算符z的本征值和本征函数

--4.4.3 角动量平方算符的本征值和本征函数

--4.4.4 球谐函数的基本性质

-第四章 力学量用算符表示--第10周作业

第五章 量子力学中的对称性与守恒量

-5.1 量子力学中的守恒量

--5.1.1 力学量的平均值随时间的演化

--5.1.2 量子力学里的守恒量 好量子数

--*5.1.3 能级简并与守恒量

--*5.1.4 维里定理

-5.2 对称性与守恒量

--5.2.1体系的对称变换 幺正变换

--5.2.2 空间平移不变性与动量守恒

--5.2.3 空间旋转不变性与角动量守恒

--5.2.4 离散对称性及离散守恒量

-第五章 量子力学中的对称性与守恒量--第11周作业

-5.3 全同粒子系统波函数的交换对称性

--5.3.1多粒子体系的描写

--5.3.2 全同粒子的不可区别性

--5.3.3波函数的变换对称性和粒子的统计性质

--5.3.4交换对称或反对称波函数的构成 泡利不相容原理

--5.3.5 自由电子气 费米面

-*5.4 Schrödinger图画和Heisenberg图画

--*5.4.1 薛定谔方程初值问题的形式解

--*5.4.2 薛定谔图画

--*5.4.3 海森堡图画

-第五章 量子力学中的对称性与守恒量--第12周作业

第六章 中心力场

-6.1 中心力场中粒子运动的一般性质

--6.1.1中心力场中薛定谔方程的约化

--6.1.2约化径向方程与一维薛定谔方程的比较

--*6.1.3 二体问题的分解 相对运动

-*6.2 球无限深势阱

--*6.2.1球坐标系中的自由粒子波函数

--*6.2.2球无限深势阱中能级的确定

-第六章 中心力场--第13周作业

-6.3 三维各向同性谐振子

--6.3.1 三维各向同性谐振子在直角坐标系中的解

--6.3.2球坐标系中的解 缔合拉盖尔多项式

-6.4 氢原子和类氢离子

--6.4.1 径向方程的化简及其解

--6.4.2 氢原子和类氢原子的能级和波函数

--6.4.3 氢原子的轨道磁矩 g因子

--6.4.4 碱金属原子的能级

--*6.4.5 电子偶素 电子偶素湮灭的EPR佯谬

第七章 带电粒子在电磁场中的运动

-7.1 带电粒子在电磁场中的薛定谔方程

--7.1.1 带电粒子在电磁场中的经典哈密顿量 正则动量

--7.1.2 带电粒子在电磁场中的薛定谔方程 规范条件

--7.1.3 经典的和量子的规范不变性

-*7.2 朗道能级

--7.2.1 带电粒子在均匀磁场中的经典运动

--7.2.2 带电粒子在均匀磁场中的量子运动 朗道能级

--*7.2.3 朗道能级的简并度

-*7.3 阿哈罗诺夫-博姆(Aharonov-Bohm)效应

--*7.3.1 费曼的路径振幅

--*7.3.2 无线长螺线管的矢量势

--*7.3.3 阿哈罗诺夫-博姆效应和不可积相因子

1.1.4 康普顿效应笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。