当前课程知识点:量子力学(上) >  第一章 量子力学的历史渊源 >  1.2 玻尔的原子结构模型 >  1.2.1 氢原子光谱和弗兰克-赫兹实验

返回《量子力学(上)》慕课在线视频课程列表

1.2.1 氢原子光谱和弗兰克-赫兹实验在线视频

1.2.1 氢原子光谱和弗兰克-赫兹实验

下一节:1.2.2 玻尔模型

返回《量子力学(上)》慕课在线视频列表

1.2.1 氢原子光谱和弗兰克-赫兹实验课程教案、知识点、字幕

量子力学的第二个历史来源

是玻尔的原子结构模型

人们对于原子结构的认识

最早来自原子的特征光谱

每种原子都有自己的

特征光谱

节日焰火中

五颜六色的色彩

正是利用了这些特征光谱

人们对于氢原子的特征光谱

做了很多实验的研究

这就是人们

测量氢原子特征谱线的时候

所得到的一系列的谱系

象莱曼系 巴尔末系

帕邢系等等

对于这些特征谱线的频率

黎德堡提出了一个

最普适的公式

这说是ν =

R_H c

里边是两项之差

每一项都是整数平方的倒数

这里R_H称之为黎德堡常数

我们发觉

黎德堡公式

是两项之差

其中的一项

具有这个形式

就是ν_n = R_H c 1/n^2

我们就把这每一项

称为一个光谱项

这个公式

有一个很自然的解释

那就是每一个光谱项

对应着氢原子的

一种能量状态

当氢原子

从一种能量状态变到

另外一种能量状态的时候

就产生了它的特征谱线

这样一来

我们就应该认为

氢原子的能量状态

是不连续的变化的

它的可能的值就是

每一个光谱项乘以 h

这个公式称之为

氢原子的能谱

对于原子能量的不连续变化

还有另外一个实验

也可能得到证明

那就是

弗兰克-赫兹实验

他们让一定能量的电子

穿过汞蒸器

然后测量

形成的这个电流的变化

由于在这个过程当中

电子把自己一部分能量

交给了汞原子

造成了电流的变动

而通过这个变动

他们也得出结论

原子的能量

是不连续变化的

对于这样的一个现象

经典理论很难加以解释

首先我们可以

不考虑电子自身的电场

认为电子就是在原子核的

库仑电场中运动

那么

在这种情况下

氢原子的能量

不可能是分立的

也叫离散的

因为它的能量

是由电子的初始条件决定的

而初始条件可以连续的变化

如果我们在考虑到

电子自身还是带电的

电子在原子核周围的运动

是一种加速运动

那么

根据经典电动力学

电荷的加速运动会导致

电荷向外发出电磁辐射

它的能量就会不断地损失

所以

连稳定的氢原子

都不可能存在

量子力学(上)课程列表:

序言

-引言

--引言

第一章 量子力学的历史渊源

-1.1 普朗克的光量子假说

--1.1.1 黑体辐射的能谱

--1.1.2 普朗克假说

--1.1.3 光电效应

--1.1.4 康普顿效应

-1.2 玻尔的原子结构模型

--1.2.1 氢原子光谱和弗兰克-赫兹实验

--1.2.2 玻尔模型

--1.2.3 索末菲量子化条件

-1.3 德布罗意的物质波假说

--1.3.1 德布罗意假说

--1.3.2 微观粒子波动性的实验

-第一章 量子力学的历史渊源--第1周作业

第二章 波函数与薛定谔方程

-2.1波函数

--2.1.1 波粒二象性的意义

--2.1.2 波函数的统计诠释

--2.1.3 波函数的归一化

--2.1.4 态叠加原理

--2.1.5 动量分布几率

--2.1.6 不确定关系

--2.1.7 力学量的平均值和力学量的算符表示

--2.1.8波函数应满足的要求

-第二章 波函数与薛定谔方程--第2周作业

-2.2 薛定谔方程

--2.2.1 薛定谔方程的引入

--2.2.2 几率守恒定律

--*2.2.3量子力学的初值问题 自由粒子的传播子

--2.2.4 定态薛定谔方程 能量本征方程

--2.2.5 非定态 薛定谔方程的一般解

--2.2.6 一般系统的薛定谔方程

--2.2.7 量子力学的表象

--2.2.8 量子力学中的测量 波包坍缩

-第二章 波函数与薛定谔方程--第3周作业

第三章 一维势场中的粒子

-3.1一维运动问题的一般分析

--3.1.1 一维定态薛定谔方程的解的一般特征

--3.1.2 关于一维定态薛定谔方程的解的基本定理

--3.1.3 一维定态的分类 束缚态和非束缚态

--3.1.4一维束缚态的一般性质

-第三章 一维势场中的粒子--第4周作业

-3.2 方势阱

--3.2.1 一维无限深势阱

--3.2.2 对称有限深方势阱

-3.3 δ函数势阱

--3.3.1 函数的定义和主要性质

--3.3.2 一维δ函数势阱中的束缚态

--3.3.3 δ函数势阱与方势阱的关系

-第三章 一维势场中的粒子--第5周作业

-3.4 线性谐振子

--3.4.1 方程的无量纲化和化简

--3.4.2 厄密多项式

--3.4.3 线性谐振子的能级和波函数

-3.5 一维散射问题

--3.5.1 一维散射问题的一般描述方法

--3.5.2 方势垒的量子隧穿

--3.5.3 方势阱的共振透射

-第三章 一维势场中的粒子--第6周作业

-*3.6 δ势的穿透

--3.6.1 δ势垒的穿透

--3.6.2 δ势阱的穿透

-*3.7 周期性势场中的能带结构

--*3.7.1 有限平移不变性,弗洛盖-布洛赫定理

--*3.7.2克勒尼希-彭尼模型,能带的形成

--第三章 一维势场中的粒子--第7周作业

第四章 力学量用算符表示

-4.1 算符及其运算

--4.1.1 基本的和导出的力学量算符

--4.1.2 线性算符

--4.1.3 算符的运算和厄密算符

--4.1.4算符的对易关系

-第四章 力学量用算符表示--第8周作业

-4.2 厄密算符的主要性质

--4.2.1 算符的本证方程

--4.2.2 厄密算符的本征值

--4.2.3 本征函数系的正交性

--4.2.4 简并情形 共同本征函数

--4.2.5 力学量的完备集

--4.2.6 一般力学量的测量几率

--4.2.7 不确定关系的准确形式

-第四章 力学量用算符表示--第9周作业

-4.3 动量本征函数的归一化

--4.3.1 动量本征函数在无穷空间中的归一化

--*4.3.2 动量本征函数的箱归一化

-4.4 角动量算符的本征值和本征态

--4.4.1角动量算符的球坐标表示

--4.4.2 角动量算符z的本征值和本征函数

--4.4.3 角动量平方算符的本征值和本征函数

--4.4.4 球谐函数的基本性质

-第四章 力学量用算符表示--第10周作业

第五章 量子力学中的对称性与守恒量

-5.1 量子力学中的守恒量

--5.1.1 力学量的平均值随时间的演化

--5.1.2 量子力学里的守恒量 好量子数

--*5.1.3 能级简并与守恒量

--*5.1.4 维里定理

-5.2 对称性与守恒量

--5.2.1体系的对称变换 幺正变换

--5.2.2 空间平移不变性与动量守恒

--5.2.3 空间旋转不变性与角动量守恒

--5.2.4 离散对称性及离散守恒量

-第五章 量子力学中的对称性与守恒量--第11周作业

-5.3 全同粒子系统波函数的交换对称性

--5.3.1多粒子体系的描写

--5.3.2 全同粒子的不可区别性

--5.3.3波函数的变换对称性和粒子的统计性质

--5.3.4交换对称或反对称波函数的构成 泡利不相容原理

--5.3.5 自由电子气 费米面

-*5.4 Schrödinger图画和Heisenberg图画

--*5.4.1 薛定谔方程初值问题的形式解

--*5.4.2 薛定谔图画

--*5.4.3 海森堡图画

-第五章 量子力学中的对称性与守恒量--第12周作业

第六章 中心力场

-6.1 中心力场中粒子运动的一般性质

--6.1.1中心力场中薛定谔方程的约化

--6.1.2约化径向方程与一维薛定谔方程的比较

--*6.1.3 二体问题的分解 相对运动

-*6.2 球无限深势阱

--*6.2.1球坐标系中的自由粒子波函数

--*6.2.2球无限深势阱中能级的确定

-第六章 中心力场--第13周作业

-6.3 三维各向同性谐振子

--6.3.1 三维各向同性谐振子在直角坐标系中的解

--6.3.2球坐标系中的解 缔合拉盖尔多项式

-6.4 氢原子和类氢离子

--6.4.1 径向方程的化简及其解

--6.4.2 氢原子和类氢原子的能级和波函数

--6.4.3 氢原子的轨道磁矩 g因子

--6.4.4 碱金属原子的能级

--*6.4.5 电子偶素 电子偶素湮灭的EPR佯谬

第七章 带电粒子在电磁场中的运动

-7.1 带电粒子在电磁场中的薛定谔方程

--7.1.1 带电粒子在电磁场中的经典哈密顿量 正则动量

--7.1.2 带电粒子在电磁场中的薛定谔方程 规范条件

--7.1.3 经典的和量子的规范不变性

-*7.2 朗道能级

--7.2.1 带电粒子在均匀磁场中的经典运动

--7.2.2 带电粒子在均匀磁场中的量子运动 朗道能级

--*7.2.3 朗道能级的简并度

-*7.3 阿哈罗诺夫-博姆(Aharonov-Bohm)效应

--*7.3.1 费曼的路径振幅

--*7.3.2 无线长螺线管的矢量势

--*7.3.3 阿哈罗诺夫-博姆效应和不可积相因子

1.2.1 氢原子光谱和弗兰克-赫兹实验笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。