当前课程知识点:计算几何 >  01. Convex Hull >  M. Wrap-Up >  01-M. Wrap-Up

返回《计算几何》慕课在线视频课程列表

01-M. Wrap-Up在线视频

01-M. Wrap-Up

下一节:02-0. Introduction

返回《计算几何》慕课在线视频列表

01-M. Wrap-Up课程教案、知识点、字幕

那么需要指出的是

凸包的构造算法形形色色

还有很多很多

远远不止我们刚才介绍的这些

而这些只不过是冰山上的一角

那么限于我们慕课课堂

课程的时间的约束

我们不可能再做进一步的介绍

如果你有兴趣

你可以首先来

从我们后续补充的那些讲义入手

你可以看到

我们还可以通过将Jarvis March

和Graham Scan相结合

得到一个所谓的

自适应的

能够具有Output Sensitivity的算法

这个算法在最好的情况下

能够和Jarvis March相当

在最差的情况下

也不至于差过Graham Scan

另外我们也可以对

所有的点在不同的假设

分布的情况下

它们随机所能够

构成的凸包它的size是多少

做出一个数学上的

精准的估计

基于这样的一个精准的估计

我们不仅可以反过来

更加准确和客观地来考评

以上的那些算法的性能

而且可以引出

进一步更多的算法

比如说著名的Quickhull

当然凸包相关的问题

还远远不止这些

比如说我们还可以考虑

高维的凸包

我们会发现在高维上

依然存在凸包的问题

而且如果你对计算几何

如果有充分了解的话

你就会发现很多别的问题

都可以转化为凸包问题

比如我们后面要介绍的

Voronoi图问题

实际上任何一个d维空间中的

Voronoi图的构造问题

都可以转化为更高一维的

也就是d+1位的凸包的构造问题

如果我们能够把这个问题解决了

我们只需要经过反投影

就可以很自然地得到

d维空间中的Voronoi图的结果

所以构造任一维度的凸包

这个问题在理论上和应用中

都是非常具有价值的

那么很可惜

限于时间的关系

我们没有时间去仔细地讲解这个

我可以告诉你的就是说

其中蕴涵着

很多非常有意思的结论

比如关于复杂度

我们后面会发现

在二维和三维的空间中

我们构造n个点的凸包

都可以在nlogn的时间内完成

但是我们会发现

在四维空间中

就不得不花费至少是

n平方的时间

如果再往上去

我们会发现五维空间中

也只需要n平方的时间

那么你可能会迷惑

这样的一个时间复杂度

随着维度的增加

是如何变化的呢

这其中居然有一个

很有意思的结论

也就是说

是按照两维、两维为单位变化的

这就是为什么

我们看得出来

二维和三维的情况下

复杂度是一样的

而四维五维是一样的

当然相应地

六维和七维是一样的

八维和九维是一样的

非常非常有意思

也就是说在这样的一个方向上

我们会发现时间复杂度

是呈一个以两个、两个为单位的

一个折叠的一个方式递增的

这样的一个台阶的形成

是为什么呢

背后其实也有很深刻的原因

当然无论如何

我们已经结束了

对凸包的学习

这是我们整个计算几何的一个基础

我希望你能够通过这部分的学习

不光是掌握这些

重要的一些思想方法和技术

而且更重要的是

我希望你能像我当年

学计算几何一样

一上来就被

这样的一个学科所吸引

能够被它所深深地吸引

计算几何课程列表:

00. Introduction

-Before we start

--html

-Evaluation

--html

-Online Judge

--html

-Lecture notes

--html

-Discussion

--html

-A. History of This Course

--00-A. History of This Course

-B. What's Computational Geometry

--00-B. What's Computational Geometry

-B. What's Computational Geometry--作业

-C. How to Learn CG Better

--00-C. How to Learn CG Better

-C. How to Learn CG Better--作业

-D. Why English

--00-D. Why English

01. Convex Hull

-A. Convexity

--01-A-01. Why Convex Hull

--01-A-02. Nails In The Table

--01-A-03. Paint Blending

--01-A-04. Color Space

--01-A-05. Convex Hull

-A. Convexity--作业

-B. Extreme Points

--01-B-01. Extremity

--01-B-02. Strategy

--01-B-03. In-Triangle Test

--01-B-04. To-Left Test

--01-B-05. Determinant

-B. Extreme Points--作业

-C. Extreme Edges

--01-C-01. Definition

--01-C-02. Algorithm

--01-C-03. Demonstration

-C. Extreme Edges--作业

-D. Incremental Construction

--01-D-01. Decrease and Conquer

--01-D-02. In-Convex-Polygon Test

--01-D-03. Why Not Binary Search

--01-D-04. Support-Lines

--01-D-05. Pattern Of Turns

--01-D-06. Exterior/Interior

-D. Incremental Construction--作业

-E. Jarvis March

--01-E-01. Selectionsort

--01-E-02. Strategy

--01-E-03. Coherence

--01-E-04. To-Left Test

--01-E-05. Degeneracy

--01-E-06. Lowest-Then-Leftmost

--01-E-07. Implementation

--01-E-08. Output Sensitivity

-E. Jarvis March--作业

-F. Lower Bound

--01-F-01. Reduction

--01-F-02. CAO Chong's Methodology

--01-F-03. Transitivity

--01-F-04. Reduction: Input

--01-F-05. Reduction: Output

--01-F-06. Sorting ≤_N 2d-CH

-F. Lower Bound--作业

-G. Graham Scan: Algorithm

--01-G-01. Preprocessing

--01-G-02. Scan

--01-G-03. Simplest Cases

-G. Graham Scan: Algorithm--作业

-H. Graham Scan: Example

--01-H-01. Example (1/2)

--01-H-02. Example (2/2)

-H. Graham Scan: Example--作业

-I. Graham Scan: Correctness

--01-I-01. Left Turn

--01-I-02. Right Turn

--01-I-03. Presorting

-I. Graham Scan: Correctness--作业

-J. Graham Scan: Analysis

--01-J-01. Ω(n) Backtracks

--01-J-02. Planarity

--01-J-03. Amortization

--01-J-04. Simplification

-J. Graham Scan: Analysis--作业

-K. Divide-And-Conquer (1)

--01-K-01. Merge

--01-K-02. Common Kernel

--01-K-03. Interior

--01-K-04. Exterior

-K. Divide-And-Conquer (1)--作业

-L. Divide-And-Conquer (2)

--01-L-01. Preprocessing

--01-L-02. Common Tangents

--01-L-03. Topmost + Bottommost ?

--01-L-04. Stitch

--01-L-05. Zig-Zag

--01-L-06. Time Cost

--01-L-07. More Considerations

-L. Divide-And-Conquer (2)--作业

-M. Wrap-Up

--01-M. Wrap-Up

02. Geometric Intersection

-0. Introduction

--02-0. Introduction

-0. Introduction--作业

-A. Preliminary

--02-A-01. EU

--02-A-02. Min-Gap

--02-A-03. Max-Gap

--02-A-04. IEU

-A. Preliminary--作业

-B. Interval Intersection Detection

--02-B-01. Algorithm

--02-B-02. Lower Bound

-B. Interval Intersection Detection--作业

-C. Segment Intersection Reporting

--02-C-01. Brute-force

--02-C-02. Hardness

-C. Segment Intersection Reporting--作业

-D. BO Algorithm: Strategy

--02-D-01. Proximity & Separability

--02-D-02. Comparability & Ordering

--02-D-03. Data Structures

--02-D-04. Possible Cases

-D. BO Algorithm: Strategy--作业

-E. BO Algorithm: Implementation

--02-E-01. Degeneracy

--02-E-02. Event Queue

--02-E-03. Events & Operations

--02-E-04. Sweepline Status

-E. BO Algorithm: Implementation--作业

-F. BO Algorithm: Analysis

--02-F-01. Correctness

--02-F-02. Example

--02-F-03. Retesting

--02-F-04. Complexity of Event Queue

--02-F-05. Complexity of Status Structure

-F. BO Algorithm: Analysis--作业

-G. Convex Polygon Intersection Detection

--02-G-01. Problem Specification

--02-G-02. Monotone Partitioning

--02-G-03. Criterion

--02-G-04. Decrease-And-Conquer

--02-G-05. Example Cases

--02-G-06. Complexity

-G. Convex Polygon Intersection Detection--作业

-H. Edge Chasing

--02-H-01. Eliminating Sickles

--02-H-02. Example

--02-H-03. Analysis

-H. Edge Chasing--作业

-I. Plane Sweeping

--02-I. Plane Sweeping

-I. Plane Sweeping--作业

-J. Halfplane Intersection Construction

--02-J-01. The Problem

--02-J-02. Lower Bound

--02-J-03. Divide-And-Conquer

-J. Halfplane Intersection Construction--作业

03. Triangulation

-0. Methodology

--03-0. Methodology

-0. Methodology--作业

-A. Art Gallery Problem

--03-A-01. Definition

--03-A-02. Lower & Upper Bounds

--03-A-03. Hardness

--03-A-04. Approximation & Classification

-A. Art Gallery Problem--作业

-B. Art Gallery Theorem

--03-B-01. Necessity of floor(n/3)

--03-B-02. Sufficiency by Fan Decomposition

-B. Art Gallery Theorem--作业

-C. Fisk's Proof

--03-C-01. Triangulation

--03-C-02. 3-Coloring

--03-C-03. Domination

--03-C-04. Pigeon-Hole Principle

--03-C-05. Generalization

-C. Fisk's Proof--作业

-D. Orthogonal Polygons

--03-D-01. Necessity of floor(n/4)

--03-D-02. Sufficiency by Convex Quadrilateralization

--03-D-03. Generalization

-D. Orthogonal Polygons--作业

-E. Triangulation

--03-E-01. Existence

--03-E-02. Ear & Mouth

--03-E-03. Two-Ear Theorem

--03-E-04. Well-Order

--03-E-05. Ear Candidate

--03-E-06. Induction

--03-E-07. Well-Order (Again)

--03-E-08. Properties

-E. Triangulation--作业

-F. Triangulating Monotone Polygons

--03-F-01. Monotone Polygon

--03-F-02. Monotonicity Testing

--03-F-03. Strategy

--03-F-04. Stack-Chain Consistency

--03-F-05. Same Side + Reflex

--03-F-06. Same Side + Convex

--03-F-07. Opposite Side

--03-F-08. Example

--03-F-09. Analysis

-F. Triangulating Monotone Polygons--作业

-G. Monotone Decomposition

--03-G-01. Cusps

--03-G-02. Helper

--03-G-03. Helper Candidate

--03-G-04. Sweep-Line Status

--03-G-05. Possible Cases

--03-G-06. Example

--03-G-07. Analysis

-G. Monotone Decomposition--作业

-I. Tetrahedralization

--03-I-01. Polyhedron Decomposition

--03-I-02. Schonhardt's Polyhedron

--03-I-03. Seidel's Polygon

-I. Tetrahedralization--作业

04. Voronoi Diagram

-A. Introduction

--04-A-01. A First Glance

--04-A-02. Dining Halls on Campus

--04-A-03. More Analogies & Applications

--04-A-04. Voronoi

-A. Introduction--作业

-B. Terminologies

--04-B-01. Site & Cell

--04-B-02. Intersecting Halfspaces

--04-B-03. Voronoi Diagram

--04-B-04. Planar Voronoi Diagram

-B. Terminologies--作业

-C. Properties

--04-C-01. Non-Empty Cells

--04-C-02. Empty Disks

--04-C-03. Nearest = Concyclic

--04-C-04. Number of Nearest Sites = Degree

--04-C-05. Split & Merge

-C. Properties--作业

-D. Complexity

--04-D-01. Linearity

--04-D-02. Proof

-D. Complexity--作业

-E. Representation

--04-E-01. Subdivision

--04-E-02. Fary's Theorem

--04-E-03. Representing VD

-E. Representation--作业

-F. DCEL

--04-F-01. Twin Edges

--04-F-02. Half-Edge

--04-F-03. Vertex & Face

--04-F-04. Traversal

--04-F-05. True Or False

--04-F-06. Application

-F. DCEL--作业

-G. Hardness

--04-G-01. 1D Voronoi Diagram

--04-G-02. 2D Voronoi Diagram

--04-G-03. Voronoi Diagram In General Position

-G. Hardness--作业

-H. Sorted Sets

--04-H-01. Convex Hull Made Easier

--04-H-02. Convex Hull As A Combinatorial Structure

--04-H-03. Voronoi Diagram As A Geometric Structure

-H. Sorted Sets--作业

-I. VD_sorted

--04-I-01. ε-Closeness

--04-I-02. Lifting

--04-I-03. Projection

--04-I-04. Case A

--04-I-05. Case B

--04-I-06. Sorting Not Made Easier

-I. VD_sorted--作业

-J. Naive Construction

--J. Naive Construction

-J. Naive Construction--作业

-K. Incremental Construction

--04-K-01. Royal Garden

--04-K-02. Disjoint Union

--04-K-03. Complexity

-K. Incremental Construction--作业

-L. Divide-And-Conquer

--04-L-01. Strategy

--04-L-02. Solving Overlaps

--04-L-03. Contour

--04-L-04. Bisectors

--04-L-05. Y-Monotonicity

--04-L-06. Common Tangents

--04-L-07. Contour Length

--04-L-08. Clip & Stitch

--04-L-09. Intersecting with Cells

--04-L-10. Convexity

--04-L-11. Avoiding Rescans

-L. Divide-And-Conquer--作业

-M. Plane-Sweep

--04-M-01. A First Glance

--04-M-02. Backtracking

--04-M-03. Fortune's Trick

--04-M-04. Frozen Region

--04-M-05. Beach Line

--04-M-06. Lower Envelope

--04-M-07. Break Points

--04-M-08. Events

--04-M-09. Circle Event: What, When & Where

--04-M-10. Circle Event: Why

--04-M-11. Circle Event: How

--04-M-12. Site Event: What

--04-M-13. Site Event: How

-M. Plane-Sweep--作业

05. Delaunay Triangulation

-A. Point Set Triangulation

--05-A-01. Definition

--05-A-02. Edge Flipping

--05-A-03. Upper Bound

--05-A-04. Lower Bound

-A. Point Set Triangulation--作业

-B. Delaunay Triangulation

--05-B-01. Dual Graph

--05-B-02. Triangulation

--05-B-03. Hardness

--05-B-04. History

-B. Delaunay Triangulation--作业

-C. Properties

--05-C-01. Empty Circumcircle

--05-C-02. Empty Circle

--05-C-03. Nearest Neighbor

--05-C-04. Complexity

-C. Properties--作业

-D. Proximity Graph

--05-D-01. Gabriel Graph

--05-D-02. Relative Neighborhood Graph

--05-D-03. Lower Bounds

-D. Proximity Graph--作业

-E. Euclidean Minimum Spanning Tree

--05-E-01. Definition

--05-E-02. Construction

--05-E-03. Subgraph of RNG

--05-E-04. Example

-E. Euclidean Minimum Spanning Tree--作业

-F. Euclidean Traveling Salesman Problem

--05-F-01. Definition

--05-F-02. NP-Hardness

--05-F-03. Approximation

-G. Minimum Weighted Triangulation

--05-G-01. Definition

--05-G-02. Counter-Example

--05-G-03. Hardness

-G. Minimum Weighted Triangulation--作业

-H. Construction

--05-H-01. Subtended Arc

--05-H-02. Angle Vector

--05-H-03. Maximizing The Minimum Angle

--05-H-04. Evolution By Edge Flipping

--05-H-05. Strategies

-H. Construction--作业

-I. RIC With Example

--05-I-01. Idea

--05-I-02. Point Location

--05-I-03. In-Circle Test

--05-I-04. Edge Flipping

--05-I-05. Frontier

--05-I-06. Convergence

-I. RIC With Example--作业

-J. Randomized Incremental Construction

--05-J-01. Recursive Implementation

--05-J-02. Iterative Implementation

--05-J-03. In-Circle Test

--05-J-04. Point Location

-J. Randomized Incremental Construction--作业

-K. RIC Analysis

--05-K-01. Time Cost

--05-K-02. Backward Analysis

--05-K-03. Preconditions

--05-K-04. Types Of Edge Change

--05-K-05. Number Of Edge Changes

--05-K-06. Average Degree

--05-K-07. Number Of Rebucketings

--05-K-08. Probability For Rebucketing

--05-K-09. Expectation

--05-K-10. Further Consideration

06. Point Location

-0. Online/Offline Algorithms

--06-0. Online/Offline Algorithms

-0. Online/Offline Algorithms--作业

-A. Introduction

--06-A-01. Where Am I

--06-A-02. Point Location

--06-A-03. Assumptions For Clarity

--06-A-04. Input Size

--06-A-05. Performance Measurements

--06-A-06. A Global View

-A. Introduction--作业

-B. Slab Method

--06-B-01. Slab Decomposition

--06-B-02. Ordering Trapezoids

--06-B-03. Tree of Trees

--06-B-04. Example

--06-B-05. Query Time

--06-B-06. Preprocessing Time

--06-B-07. Storage Cost

--06-B-08. Worst Case

-B. Slab Method--作业

-C. Persistence

--06-C-01. Ephemeral Structure

--06-C-02. Persistent Structure

--06-C-03. Persistent Slabs

-C. Persistence--作业

-D. Path Copying

--06-D-01. Strategy

--06-D-02. X-Search

--06-D-03. Storage Optimization

-D. Path Copying--作业

-E. Node Copying

--06-E-01. O(1) Rotation

--06-E-02. Strategy

--06-E-03. Why Red-Black

--06-E-04. Linear Space

--06-E-05. Time Penalty

-E. Node Copying--作业

-F. Limited Node Copying

--06-F-01. Idea

--06-F-02. Split

--06-F-03. Complexity

--06-F-04. Recoloring

-G. Kirkpatrick Structure

--06-G-01. Optimal And Simpler

--06-G-02. Triangulation

--06-G-03. Example

--06-G-04. Hierarchy

--06-G-05. Independent Subset

--06-G-06. The More The Better

--06-G-07. The Fewer The Better

--06-G-08. Degree

--06-G-09. Existence Of Independent Subset

--06-G-10. Construction Of Independent Subset

--06-G-11. DAG

-G. Kirkpatrick Structure--作业

-H. Trapezoidal Map

--06-H-01. Ray Shooting

--06-H-02. Decomposition

--06-H-03. Properties & Complexity

--06-H-04. Search Structure: Example

--06-H-05. Search Structure: Nodes

--06-H-06. Search Structure: Performance

-H. Trapezoidal Map--作业

-I. Constructing Trapezoidal Map

--06-I-01. Initialization

--06-I-02. Iteration

--06-I-03. Challenges

--06-I-04. Case 1: Two Endpoints

--06-I-05. Case 2: One Endpoint

--06-I-06. Case 3: No Endpoints

--06-I-07. Example

-J. Performance Of Trapezoidal Map

--06-J-01. Randomization

--06-J-02. Expectation

--06-J-03. Number Of Ray Trimmed

--06-J-04. Number Of Trapezoidals Created (1)

--06-J-05. Number Of Trapezoidals Created (2)

--06-J-06. Time For Point Location

--06-J-07. Size Of Search Structure

--06-J-08. Fixed Query Point + Randomly Created Maps

--06-J-09. Each Single Step

--06-J-10. Probability Of Enclosing Trapezoid Changed

--06-J-11. Query Time

07. Geometric Range Search

-A. Range Query

--07-A-01. 1-Dimensional Range Query

--07-A-02. Brute-force

--07-A-03. Binary Search

--07-A-04. Output Sensitivity

--07-A-05. Planar Range Query

-A. Range Query--作业

-B. BBST

--07-B-01. Structure

--07-B-02. Lowest Common Ancestor

--07-B-03. Query Algorithm

--07-B-04. Complexity (1)

--07-B-05. Complexity (2)

-B. BBST--作业

-C. kd-Tree: Structure

--07-C-01. 2d-Tree

--07-C-02. Example

--07-C-03. Construction

--07-C-04. Example

--07-C-05. Canonical Subsets

-C. kd-Tree: Structure--作业

-D. kd-Tree: Algorithm

--07-D-01. Query

--07-D-02. Example

--07-D-03. Optimization

-D. kd-Tree: Algorithm--作业

-E. kd-Tree: Performance

--07-E-01. Preprocessing Time + Storage

--07-E-02. Query Time

--07-E-03. Beyond 2D

-E. kd-Tree: Performance--作业

-F. Range Tree: Structure

--07-F-01. x-Query + y-Query

--07-F-02. Worst Case

--07-F-03. x-Query * y-Queries

-F. Range Tree: Structure--作业

-G. Range Tree: Query

--07-G-01. Painters' Strategy

--07-G-02. X-Tree

--07-G-03. Y-Trees

--07-G-04. Algorithm

-G. Range Tree: Query--作业

-H. Range Tree: Performance

--07-H-01. Storage

--07-H-02. Preprocessing Time

--07-H-03. Query Time

--07-H-04. Beyond 2D

-H. Range Tree: Performance--作业

-I. Range Tree: Optimization

--07-I-01. Y-Lists

--07-I-02. Coherence

--07-I-03. Idea

--07-I-04. Fractional Cascading

--07-I-05. Complexity

08. Windowing Query

-A. Orthogonal Windowing Query

--08-A-01. Definition

--08-A-02. Classification

-A. Orthogonal Windowing Query--作业

-B. Stabbing Query

--08-B-01. 1D Windowing Query

--08-B-02. Stabbing Query

-C. Interval Tree: Construction

--08-C-01. Median

--08-C-02. Partitioning

--08-C-03. Balance

--08-C-04. Associative Lists

--08-C-05. Complexity

-C. Interval Tree: Construction--作业

-D. Interval Tree: Query

--08-D-01. Algorithm (1)

--08-D-02. Algorithm (2)

--08-D-03. Complexity

-D. Interval Tree: Query--作业

-E. Stabbing With A Segment

--08-E-01. Definition

--08-E-02. Interval Tree

--08-E-03. Query Algorithm (1)

--08-E-04. Query Algorithm (2)

--08-E-05. Overview

--08-E-06. Complexity

-F. Grounded Range Query

--08-F-01. O(n) Space

--08-F-02. 2D-GRQ

--08-F-03. 1D-GRQ Using Range Tree

--08-F-04. 1D-GRQ By Linear Scan

-G. 1D-GRQ Using Heap

--08-G-01. Heap

--08-G-02. Query

--08-G-03. Example

--08-G-04. Complexity

-G. 1D-GRQ Using Heap--作业

-H. Priority Search Tree

--08-H-01. PST = Heap + BBST

--08-H-02. Order Property

--08-H-03. Sibling Partitioning

--08-H-04. Construction

-H. Priority Search Tree--作业

-I. 2D-GRQ Using PST

--08-I-01. Algorithm (1/2)

--08-I-02. Algorithm (2/2)

--08-I-03. Example (1/3)

--08-I-04. Example (2/3)

--08-I-05. Example (3/3)

--08-I-06. Query Time (1/3)

--08-I-07. Query Time (2/3)

--08-I-08. Query Time (3/3)

-I. 2D-GRQ Using PST--作业

-J. Segment Tree

--08-J-01. General Windowing Query

--08-J-02. Elementary Interval

--08-J-03. Discretization

--08-J-04. Worst Case

--08-J-05. BBST

--08-J-06. Solving Stabbing Query

--08-J-07. Worst Case

--08-J-08. Common Ancestor

--08-J-09. Canonical Subsets

--08-J-10. O(nlogn) Space

--08-J-11. Constructing A Segment Tree

--08-J-12. Inserting A Segment (1)

--08-J-13. Inserting A Segment (2)

--08-J-14. Inserting A Segment (3)

--08-J-15. Query Algorithm

--08-J-16. Query Time

-K. Vertical Segment Stabbing Query

--08-K-01. Review

--08-K-02. X-Segment Tree

--08-K-03. Associative Structure

--08-K-04. Vertical Segment Stabbing Query

01-M. Wrap-Up笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。