当前课程知识点:计算几何 >  05. Delaunay Triangulation >  B. Delaunay Triangulation >  05-B-03. Hardness

返回《计算几何》慕课在线视频课程列表

05-B-03. Hardness在线视频

05-B-03. Hardness

下一节:05-B-04. History

返回《计算几何》慕课在线视频列表

05-B-03. Hardness课程教案、知识点、字幕

那么好 刚才我们已经看到

一般意义上的n个点的三角剖分

是可以简明的

比如说借助凸包的那种算法

在O(nlogn)的时间内

就构造出来

反过来它的下界也是如此

所以那个算法是最优的O(nlogn)

现在的问题是

作为所有三角剖分中的

那样一个特例

也就是这样的一个

dual graph过来以后的Delaunay triangulation

它的构造的成本又是多少呢

显然不可能低于

原来O(nlogn)的成本

但是你只要按照我们刚才的dual graph

这样的一个变换的角度

来看待这个问题

马上就会发现有一个好消息

也就是说尽管Delaunay三角剖分

是所有三角剖分中的一个特例

甚至是极其特殊的一个例子

但是我们为了构造它

所需要的成本

依然只需要O(nlogn)

想到原因了吗

没错 dual transform

本身的成本是很低的

我们从数学上讲

只需要线性的时间

把线性个顶点 线性个边

对应过去就可以了

其实从DCEL结构的角度来讲

成本更低

因为实际上

我们只要对DCEL结构

做一个视角的变换

重新来看待它就可以了

在那里头你还应该记得

我们要存的是三样东西

顶点的列表

边的列表以及面的列表

具体来讲就是零维的元素

一维的元素和二维的元素

而我们经过dual以后

在DCEL结构上体现的实质效果

其实就是将一维的结果保留不动

将二维的结果

要兑换一下而已

所以总而言之

我们所需要的成本

不会超过线性的时间

那我们前面讲过

Voronoi图是有算法

可以在O(nlogn)的时间内

构造出来的

再附加上这么一个转换的时间

从渐进来讲依然是O(nlogn)

所以我们说非常的幸运

Delaunay三角剖分

不仅需要这么多时间

而且确实反过来

也只需要这么多时间

计算几何课程列表:

00. Introduction

-Before we start

--html

-Evaluation

--html

-Online Judge

--html

-Lecture notes

--html

-Discussion

--html

-A. History of This Course

--00-A. History of This Course

-B. What's Computational Geometry

--00-B. What's Computational Geometry

-B. What's Computational Geometry--作业

-C. How to Learn CG Better

--00-C. How to Learn CG Better

-C. How to Learn CG Better--作业

-D. Why English

--00-D. Why English

01. Convex Hull

-A. Convexity

--01-A-01. Why Convex Hull

--01-A-02. Nails In The Table

--01-A-03. Paint Blending

--01-A-04. Color Space

--01-A-05. Convex Hull

-A. Convexity--作业

-B. Extreme Points

--01-B-01. Extremity

--01-B-02. Strategy

--01-B-03. In-Triangle Test

--01-B-04. To-Left Test

--01-B-05. Determinant

-B. Extreme Points--作业

-C. Extreme Edges

--01-C-01. Definition

--01-C-02. Algorithm

--01-C-03. Demonstration

-C. Extreme Edges--作业

-D. Incremental Construction

--01-D-01. Decrease and Conquer

--01-D-02. In-Convex-Polygon Test

--01-D-03. Why Not Binary Search

--01-D-04. Support-Lines

--01-D-05. Pattern Of Turns

--01-D-06. Exterior/Interior

-D. Incremental Construction--作业

-E. Jarvis March

--01-E-01. Selectionsort

--01-E-02. Strategy

--01-E-03. Coherence

--01-E-04. To-Left Test

--01-E-05. Degeneracy

--01-E-06. Lowest-Then-Leftmost

--01-E-07. Implementation

--01-E-08. Output Sensitivity

-E. Jarvis March--作业

-F. Lower Bound

--01-F-01. Reduction

--01-F-02. CAO Chong's Methodology

--01-F-03. Transitivity

--01-F-04. Reduction: Input

--01-F-05. Reduction: Output

--01-F-06. Sorting ≤_N 2d-CH

-F. Lower Bound--作业

-G. Graham Scan: Algorithm

--01-G-01. Preprocessing

--01-G-02. Scan

--01-G-03. Simplest Cases

-G. Graham Scan: Algorithm--作业

-H. Graham Scan: Example

--01-H-01. Example (1/2)

--01-H-02. Example (2/2)

-H. Graham Scan: Example--作业

-I. Graham Scan: Correctness

--01-I-01. Left Turn

--01-I-02. Right Turn

--01-I-03. Presorting

-I. Graham Scan: Correctness--作业

-J. Graham Scan: Analysis

--01-J-01. Ω(n) Backtracks

--01-J-02. Planarity

--01-J-03. Amortization

--01-J-04. Simplification

-J. Graham Scan: Analysis--作业

-K. Divide-And-Conquer (1)

--01-K-01. Merge

--01-K-02. Common Kernel

--01-K-03. Interior

--01-K-04. Exterior

-K. Divide-And-Conquer (1)--作业

-L. Divide-And-Conquer (2)

--01-L-01. Preprocessing

--01-L-02. Common Tangents

--01-L-03. Topmost + Bottommost ?

--01-L-04. Stitch

--01-L-05. Zig-Zag

--01-L-06. Time Cost

--01-L-07. More Considerations

-L. Divide-And-Conquer (2)--作业

-M. Wrap-Up

--01-M. Wrap-Up

02. Geometric Intersection

-0. Introduction

--02-0. Introduction

-0. Introduction--作业

-A. Preliminary

--02-A-01. EU

--02-A-02. Min-Gap

--02-A-03. Max-Gap

--02-A-04. IEU

-A. Preliminary--作业

-B. Interval Intersection Detection

--02-B-01. Algorithm

--02-B-02. Lower Bound

-B. Interval Intersection Detection--作业

-C. Segment Intersection Reporting

--02-C-01. Brute-force

--02-C-02. Hardness

-C. Segment Intersection Reporting--作业

-D. BO Algorithm: Strategy

--02-D-01. Proximity & Separability

--02-D-02. Comparability & Ordering

--02-D-03. Data Structures

--02-D-04. Possible Cases

-D. BO Algorithm: Strategy--作业

-E. BO Algorithm: Implementation

--02-E-01. Degeneracy

--02-E-02. Event Queue

--02-E-03. Events & Operations

--02-E-04. Sweepline Status

-E. BO Algorithm: Implementation--作业

-F. BO Algorithm: Analysis

--02-F-01. Correctness

--02-F-02. Example

--02-F-03. Retesting

--02-F-04. Complexity of Event Queue

--02-F-05. Complexity of Status Structure

-F. BO Algorithm: Analysis--作业

-G. Convex Polygon Intersection Detection

--02-G-01. Problem Specification

--02-G-02. Monotone Partitioning

--02-G-03. Criterion

--02-G-04. Decrease-And-Conquer

--02-G-05. Example Cases

--02-G-06. Complexity

-G. Convex Polygon Intersection Detection--作业

-H. Edge Chasing

--02-H-01. Eliminating Sickles

--02-H-02. Example

--02-H-03. Analysis

-H. Edge Chasing--作业

-I. Plane Sweeping

--02-I. Plane Sweeping

-I. Plane Sweeping--作业

-J. Halfplane Intersection Construction

--02-J-01. The Problem

--02-J-02. Lower Bound

--02-J-03. Divide-And-Conquer

-J. Halfplane Intersection Construction--作业

03. Triangulation

-0. Methodology

--03-0. Methodology

-0. Methodology--作业

-A. Art Gallery Problem

--03-A-01. Definition

--03-A-02. Lower & Upper Bounds

--03-A-03. Hardness

--03-A-04. Approximation & Classification

-A. Art Gallery Problem--作业

-B. Art Gallery Theorem

--03-B-01. Necessity of floor(n/3)

--03-B-02. Sufficiency by Fan Decomposition

-B. Art Gallery Theorem--作业

-C. Fisk's Proof

--03-C-01. Triangulation

--03-C-02. 3-Coloring

--03-C-03. Domination

--03-C-04. Pigeon-Hole Principle

--03-C-05. Generalization

-C. Fisk's Proof--作业

-D. Orthogonal Polygons

--03-D-01. Necessity of floor(n/4)

--03-D-02. Sufficiency by Convex Quadrilateralization

--03-D-03. Generalization

-D. Orthogonal Polygons--作业

-E. Triangulation

--03-E-01. Existence

--03-E-02. Ear & Mouth

--03-E-03. Two-Ear Theorem

--03-E-04. Well-Order

--03-E-05. Ear Candidate

--03-E-06. Induction

--03-E-07. Well-Order (Again)

--03-E-08. Properties

-E. Triangulation--作业

-F. Triangulating Monotone Polygons

--03-F-01. Monotone Polygon

--03-F-02. Monotonicity Testing

--03-F-03. Strategy

--03-F-04. Stack-Chain Consistency

--03-F-05. Same Side + Reflex

--03-F-06. Same Side + Convex

--03-F-07. Opposite Side

--03-F-08. Example

--03-F-09. Analysis

-F. Triangulating Monotone Polygons--作业

-G. Monotone Decomposition

--03-G-01. Cusps

--03-G-02. Helper

--03-G-03. Helper Candidate

--03-G-04. Sweep-Line Status

--03-G-05. Possible Cases

--03-G-06. Example

--03-G-07. Analysis

-G. Monotone Decomposition--作业

-I. Tetrahedralization

--03-I-01. Polyhedron Decomposition

--03-I-02. Schonhardt's Polyhedron

--03-I-03. Seidel's Polygon

-I. Tetrahedralization--作业

04. Voronoi Diagram

-A. Introduction

--04-A-01. A First Glance

--04-A-02. Dining Halls on Campus

--04-A-03. More Analogies & Applications

--04-A-04. Voronoi

-A. Introduction--作业

-B. Terminologies

--04-B-01. Site & Cell

--04-B-02. Intersecting Halfspaces

--04-B-03. Voronoi Diagram

--04-B-04. Planar Voronoi Diagram

-B. Terminologies--作业

-C. Properties

--04-C-01. Non-Empty Cells

--04-C-02. Empty Disks

--04-C-03. Nearest = Concyclic

--04-C-04. Number of Nearest Sites = Degree

--04-C-05. Split & Merge

-C. Properties--作业

-D. Complexity

--04-D-01. Linearity

--04-D-02. Proof

-D. Complexity--作业

-E. Representation

--04-E-01. Subdivision

--04-E-02. Fary's Theorem

--04-E-03. Representing VD

-E. Representation--作业

-F. DCEL

--04-F-01. Twin Edges

--04-F-02. Half-Edge

--04-F-03. Vertex & Face

--04-F-04. Traversal

--04-F-05. True Or False

--04-F-06. Application

-F. DCEL--作业

-G. Hardness

--04-G-01. 1D Voronoi Diagram

--04-G-02. 2D Voronoi Diagram

--04-G-03. Voronoi Diagram In General Position

-G. Hardness--作业

-H. Sorted Sets

--04-H-01. Convex Hull Made Easier

--04-H-02. Convex Hull As A Combinatorial Structure

--04-H-03. Voronoi Diagram As A Geometric Structure

-H. Sorted Sets--作业

-I. VD_sorted

--04-I-01. ε-Closeness

--04-I-02. Lifting

--04-I-03. Projection

--04-I-04. Case A

--04-I-05. Case B

--04-I-06. Sorting Not Made Easier

-I. VD_sorted--作业

-J. Naive Construction

--J. Naive Construction

-J. Naive Construction--作业

-K. Incremental Construction

--04-K-01. Royal Garden

--04-K-02. Disjoint Union

--04-K-03. Complexity

-K. Incremental Construction--作业

-L. Divide-And-Conquer

--04-L-01. Strategy

--04-L-02. Solving Overlaps

--04-L-03. Contour

--04-L-04. Bisectors

--04-L-05. Y-Monotonicity

--04-L-06. Common Tangents

--04-L-07. Contour Length

--04-L-08. Clip & Stitch

--04-L-09. Intersecting with Cells

--04-L-10. Convexity

--04-L-11. Avoiding Rescans

-L. Divide-And-Conquer--作业

-M. Plane-Sweep

--04-M-01. A First Glance

--04-M-02. Backtracking

--04-M-03. Fortune's Trick

--04-M-04. Frozen Region

--04-M-05. Beach Line

--04-M-06. Lower Envelope

--04-M-07. Break Points

--04-M-08. Events

--04-M-09. Circle Event: What, When & Where

--04-M-10. Circle Event: Why

--04-M-11. Circle Event: How

--04-M-12. Site Event: What

--04-M-13. Site Event: How

-M. Plane-Sweep--作业

05. Delaunay Triangulation

-A. Point Set Triangulation

--05-A-01. Definition

--05-A-02. Edge Flipping

--05-A-03. Upper Bound

--05-A-04. Lower Bound

-A. Point Set Triangulation--作业

-B. Delaunay Triangulation

--05-B-01. Dual Graph

--05-B-02. Triangulation

--05-B-03. Hardness

--05-B-04. History

-B. Delaunay Triangulation--作业

-C. Properties

--05-C-01. Empty Circumcircle

--05-C-02. Empty Circle

--05-C-03. Nearest Neighbor

--05-C-04. Complexity

-C. Properties--作业

-D. Proximity Graph

--05-D-01. Gabriel Graph

--05-D-02. Relative Neighborhood Graph

--05-D-03. Lower Bounds

-D. Proximity Graph--作业

-E. Euclidean Minimum Spanning Tree

--05-E-01. Definition

--05-E-02. Construction

--05-E-03. Subgraph of RNG

--05-E-04. Example

-E. Euclidean Minimum Spanning Tree--作业

-F. Euclidean Traveling Salesman Problem

--05-F-01. Definition

--05-F-02. NP-Hardness

--05-F-03. Approximation

-G. Minimum Weighted Triangulation

--05-G-01. Definition

--05-G-02. Counter-Example

--05-G-03. Hardness

-G. Minimum Weighted Triangulation--作业

-H. Construction

--05-H-01. Subtended Arc

--05-H-02. Angle Vector

--05-H-03. Maximizing The Minimum Angle

--05-H-04. Evolution By Edge Flipping

--05-H-05. Strategies

-H. Construction--作业

-I. RIC With Example

--05-I-01. Idea

--05-I-02. Point Location

--05-I-03. In-Circle Test

--05-I-04. Edge Flipping

--05-I-05. Frontier

--05-I-06. Convergence

-I. RIC With Example--作业

-J. Randomized Incremental Construction

--05-J-01. Recursive Implementation

--05-J-02. Iterative Implementation

--05-J-03. In-Circle Test

--05-J-04. Point Location

-J. Randomized Incremental Construction--作业

-K. RIC Analysis

--05-K-01. Time Cost

--05-K-02. Backward Analysis

--05-K-03. Preconditions

--05-K-04. Types Of Edge Change

--05-K-05. Number Of Edge Changes

--05-K-06. Average Degree

--05-K-07. Number Of Rebucketings

--05-K-08. Probability For Rebucketing

--05-K-09. Expectation

--05-K-10. Further Consideration

06. Point Location

-0. Online/Offline Algorithms

--06-0. Online/Offline Algorithms

-0. Online/Offline Algorithms--作业

-A. Introduction

--06-A-01. Where Am I

--06-A-02. Point Location

--06-A-03. Assumptions For Clarity

--06-A-04. Input Size

--06-A-05. Performance Measurements

--06-A-06. A Global View

-A. Introduction--作业

-B. Slab Method

--06-B-01. Slab Decomposition

--06-B-02. Ordering Trapezoids

--06-B-03. Tree of Trees

--06-B-04. Example

--06-B-05. Query Time

--06-B-06. Preprocessing Time

--06-B-07. Storage Cost

--06-B-08. Worst Case

-B. Slab Method--作业

-C. Persistence

--06-C-01. Ephemeral Structure

--06-C-02. Persistent Structure

--06-C-03. Persistent Slabs

-C. Persistence--作业

-D. Path Copying

--06-D-01. Strategy

--06-D-02. X-Search

--06-D-03. Storage Optimization

-D. Path Copying--作业

-E. Node Copying

--06-E-01. O(1) Rotation

--06-E-02. Strategy

--06-E-03. Why Red-Black

--06-E-04. Linear Space

--06-E-05. Time Penalty

-E. Node Copying--作业

-F. Limited Node Copying

--06-F-01. Idea

--06-F-02. Split

--06-F-03. Complexity

--06-F-04. Recoloring

-G. Kirkpatrick Structure

--06-G-01. Optimal And Simpler

--06-G-02. Triangulation

--06-G-03. Example

--06-G-04. Hierarchy

--06-G-05. Independent Subset

--06-G-06. The More The Better

--06-G-07. The Fewer The Better

--06-G-08. Degree

--06-G-09. Existence Of Independent Subset

--06-G-10. Construction Of Independent Subset

--06-G-11. DAG

-G. Kirkpatrick Structure--作业

-H. Trapezoidal Map

--06-H-01. Ray Shooting

--06-H-02. Decomposition

--06-H-03. Properties & Complexity

--06-H-04. Search Structure: Example

--06-H-05. Search Structure: Nodes

--06-H-06. Search Structure: Performance

-H. Trapezoidal Map--作业

-I. Constructing Trapezoidal Map

--06-I-01. Initialization

--06-I-02. Iteration

--06-I-03. Challenges

--06-I-04. Case 1: Two Endpoints

--06-I-05. Case 2: One Endpoint

--06-I-06. Case 3: No Endpoints

--06-I-07. Example

-J. Performance Of Trapezoidal Map

--06-J-01. Randomization

--06-J-02. Expectation

--06-J-03. Number Of Ray Trimmed

--06-J-04. Number Of Trapezoidals Created (1)

--06-J-05. Number Of Trapezoidals Created (2)

--06-J-06. Time For Point Location

--06-J-07. Size Of Search Structure

--06-J-08. Fixed Query Point + Randomly Created Maps

--06-J-09. Each Single Step

--06-J-10. Probability Of Enclosing Trapezoid Changed

--06-J-11. Query Time

07. Geometric Range Search

-A. Range Query

--07-A-01. 1-Dimensional Range Query

--07-A-02. Brute-force

--07-A-03. Binary Search

--07-A-04. Output Sensitivity

--07-A-05. Planar Range Query

-A. Range Query--作业

-B. BBST

--07-B-01. Structure

--07-B-02. Lowest Common Ancestor

--07-B-03. Query Algorithm

--07-B-04. Complexity (1)

--07-B-05. Complexity (2)

-B. BBST--作业

-C. kd-Tree: Structure

--07-C-01. 2d-Tree

--07-C-02. Example

--07-C-03. Construction

--07-C-04. Example

--07-C-05. Canonical Subsets

-C. kd-Tree: Structure--作业

-D. kd-Tree: Algorithm

--07-D-01. Query

--07-D-02. Example

--07-D-03. Optimization

-D. kd-Tree: Algorithm--作业

-E. kd-Tree: Performance

--07-E-01. Preprocessing Time + Storage

--07-E-02. Query Time

--07-E-03. Beyond 2D

-E. kd-Tree: Performance--作业

-F. Range Tree: Structure

--07-F-01. x-Query + y-Query

--07-F-02. Worst Case

--07-F-03. x-Query * y-Queries

-F. Range Tree: Structure--作业

-G. Range Tree: Query

--07-G-01. Painters' Strategy

--07-G-02. X-Tree

--07-G-03. Y-Trees

--07-G-04. Algorithm

-G. Range Tree: Query--作业

-H. Range Tree: Performance

--07-H-01. Storage

--07-H-02. Preprocessing Time

--07-H-03. Query Time

--07-H-04. Beyond 2D

-H. Range Tree: Performance--作业

-I. Range Tree: Optimization

--07-I-01. Y-Lists

--07-I-02. Coherence

--07-I-03. Idea

--07-I-04. Fractional Cascading

--07-I-05. Complexity

08. Windowing Query

-A. Orthogonal Windowing Query

--08-A-01. Definition

--08-A-02. Classification

-A. Orthogonal Windowing Query--作业

-B. Stabbing Query

--08-B-01. 1D Windowing Query

--08-B-02. Stabbing Query

-C. Interval Tree: Construction

--08-C-01. Median

--08-C-02. Partitioning

--08-C-03. Balance

--08-C-04. Associative Lists

--08-C-05. Complexity

-C. Interval Tree: Construction--作业

-D. Interval Tree: Query

--08-D-01. Algorithm (1)

--08-D-02. Algorithm (2)

--08-D-03. Complexity

-D. Interval Tree: Query--作业

-E. Stabbing With A Segment

--08-E-01. Definition

--08-E-02. Interval Tree

--08-E-03. Query Algorithm (1)

--08-E-04. Query Algorithm (2)

--08-E-05. Overview

--08-E-06. Complexity

-F. Grounded Range Query

--08-F-01. O(n) Space

--08-F-02. 2D-GRQ

--08-F-03. 1D-GRQ Using Range Tree

--08-F-04. 1D-GRQ By Linear Scan

-G. 1D-GRQ Using Heap

--08-G-01. Heap

--08-G-02. Query

--08-G-03. Example

--08-G-04. Complexity

-G. 1D-GRQ Using Heap--作业

-H. Priority Search Tree

--08-H-01. PST = Heap + BBST

--08-H-02. Order Property

--08-H-03. Sibling Partitioning

--08-H-04. Construction

-H. Priority Search Tree--作业

-I. 2D-GRQ Using PST

--08-I-01. Algorithm (1/2)

--08-I-02. Algorithm (2/2)

--08-I-03. Example (1/3)

--08-I-04. Example (2/3)

--08-I-05. Example (3/3)

--08-I-06. Query Time (1/3)

--08-I-07. Query Time (2/3)

--08-I-08. Query Time (3/3)

-I. 2D-GRQ Using PST--作业

-J. Segment Tree

--08-J-01. General Windowing Query

--08-J-02. Elementary Interval

--08-J-03. Discretization

--08-J-04. Worst Case

--08-J-05. BBST

--08-J-06. Solving Stabbing Query

--08-J-07. Worst Case

--08-J-08. Common Ancestor

--08-J-09. Canonical Subsets

--08-J-10. O(nlogn) Space

--08-J-11. Constructing A Segment Tree

--08-J-12. Inserting A Segment (1)

--08-J-13. Inserting A Segment (2)

--08-J-14. Inserting A Segment (3)

--08-J-15. Query Algorithm

--08-J-16. Query Time

-K. Vertical Segment Stabbing Query

--08-K-01. Review

--08-K-02. X-Segment Tree

--08-K-03. Associative Structure

--08-K-04. Vertical Segment Stabbing Query

05-B-03. Hardness笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。