当前课程知识点:计算几何 >  03. Triangulation >  C. Fisk's Proof >  03-C-05. Generalization

返回《计算几何》慕课在线视频课程列表

03-C-05. Generalization在线视频

03-C-05. Generalization

下一节:03-D-01. Necessity of floor(n/4)

返回《计算几何》慕课在线视频列表

03-C-05. Generalization课程教案、知识点、字幕

上面我们就重复了

Fisk所做的简单的

简略的证明

这个证明虽然非常的简单

但是我们实际上说

事情本身并不是这样

Fisk其实做了很多的

偷工减料

很多情况其实他并没有考虑

或者是想当然了

我们来看一下

第一个局限就在于

他没有考虑所谓的带洞的情况

实际上我们多边形

有可能更一般的话

是会集中存在空洞的

就像在艺术画廊里

有可能会设计一个天井一样

而且这个时候

Fisk的证明就会存在

致命的问题

哪一步呢

你能注意到吗

没错 如果的确存在空洞的话

即便你能对这样一个复杂一些的

多边形完成三角剖分

它的dual graph却不再能够继续

保证是一棵树

实际上如果存在空洞

那么它的dual graph

必然就存在环路

而在这样的情况下

我们刚才那种沿着树

进行遍历

并且逐次进行三染色的技巧

就没有办法施展了

那么更重要的是

这里还蕴藏着一个

貌似很简单

但实际上很复杂的问题

也就是Fisk的证明的基础

第一步的第一步

三角剖分

是的 我们到现在为止

还没有明确的来证明

任何一个多边形

都是肯定能够三角剖分的

虽然我们很快会看到

好的结果是的确如此

而且我们甚至会把这个结论

进行推广

即便是像这样

存在空洞的情况

任何一个简单多边形

都是能够三角剖分的

但是至少这件事情

我们还没有证明

我们不敢确认

这个立足点是成立的

那么接下来

我们就试图从严格的角度

来证明一下

为什么任何一个简单多边形

甚至是无论它有洞或者没洞

都是可以做三角剖分的

计算几何课程列表:

00. Introduction

-Before we start

--html

-Evaluation

--html

-Online Judge

--html

-Lecture notes

--html

-Discussion

--html

-A. History of This Course

--00-A. History of This Course

-B. What's Computational Geometry

--00-B. What's Computational Geometry

-B. What's Computational Geometry--作业

-C. How to Learn CG Better

--00-C. How to Learn CG Better

-C. How to Learn CG Better--作业

-D. Why English

--00-D. Why English

01. Convex Hull

-A. Convexity

--01-A-01. Why Convex Hull

--01-A-02. Nails In The Table

--01-A-03. Paint Blending

--01-A-04. Color Space

--01-A-05. Convex Hull

-A. Convexity--作业

-B. Extreme Points

--01-B-01. Extremity

--01-B-02. Strategy

--01-B-03. In-Triangle Test

--01-B-04. To-Left Test

--01-B-05. Determinant

-B. Extreme Points--作业

-C. Extreme Edges

--01-C-01. Definition

--01-C-02. Algorithm

--01-C-03. Demonstration

-C. Extreme Edges--作业

-D. Incremental Construction

--01-D-01. Decrease and Conquer

--01-D-02. In-Convex-Polygon Test

--01-D-03. Why Not Binary Search

--01-D-04. Support-Lines

--01-D-05. Pattern Of Turns

--01-D-06. Exterior/Interior

-D. Incremental Construction--作业

-E. Jarvis March

--01-E-01. Selectionsort

--01-E-02. Strategy

--01-E-03. Coherence

--01-E-04. To-Left Test

--01-E-05. Degeneracy

--01-E-06. Lowest-Then-Leftmost

--01-E-07. Implementation

--01-E-08. Output Sensitivity

-E. Jarvis March--作业

-F. Lower Bound

--01-F-01. Reduction

--01-F-02. CAO Chong's Methodology

--01-F-03. Transitivity

--01-F-04. Reduction: Input

--01-F-05. Reduction: Output

--01-F-06. Sorting ≤_N 2d-CH

-F. Lower Bound--作业

-G. Graham Scan: Algorithm

--01-G-01. Preprocessing

--01-G-02. Scan

--01-G-03. Simplest Cases

-G. Graham Scan: Algorithm--作业

-H. Graham Scan: Example

--01-H-01. Example (1/2)

--01-H-02. Example (2/2)

-H. Graham Scan: Example--作业

-I. Graham Scan: Correctness

--01-I-01. Left Turn

--01-I-02. Right Turn

--01-I-03. Presorting

-I. Graham Scan: Correctness--作业

-J. Graham Scan: Analysis

--01-J-01. Ω(n) Backtracks

--01-J-02. Planarity

--01-J-03. Amortization

--01-J-04. Simplification

-J. Graham Scan: Analysis--作业

-K. Divide-And-Conquer (1)

--01-K-01. Merge

--01-K-02. Common Kernel

--01-K-03. Interior

--01-K-04. Exterior

-K. Divide-And-Conquer (1)--作业

-L. Divide-And-Conquer (2)

--01-L-01. Preprocessing

--01-L-02. Common Tangents

--01-L-03. Topmost + Bottommost ?

--01-L-04. Stitch

--01-L-05. Zig-Zag

--01-L-06. Time Cost

--01-L-07. More Considerations

-L. Divide-And-Conquer (2)--作业

-M. Wrap-Up

--01-M. Wrap-Up

02. Geometric Intersection

-0. Introduction

--02-0. Introduction

-0. Introduction--作业

-A. Preliminary

--02-A-01. EU

--02-A-02. Min-Gap

--02-A-03. Max-Gap

--02-A-04. IEU

-A. Preliminary--作业

-B. Interval Intersection Detection

--02-B-01. Algorithm

--02-B-02. Lower Bound

-B. Interval Intersection Detection--作业

-C. Segment Intersection Reporting

--02-C-01. Brute-force

--02-C-02. Hardness

-C. Segment Intersection Reporting--作业

-D. BO Algorithm: Strategy

--02-D-01. Proximity & Separability

--02-D-02. Comparability & Ordering

--02-D-03. Data Structures

--02-D-04. Possible Cases

-D. BO Algorithm: Strategy--作业

-E. BO Algorithm: Implementation

--02-E-01. Degeneracy

--02-E-02. Event Queue

--02-E-03. Events & Operations

--02-E-04. Sweepline Status

-E. BO Algorithm: Implementation--作业

-F. BO Algorithm: Analysis

--02-F-01. Correctness

--02-F-02. Example

--02-F-03. Retesting

--02-F-04. Complexity of Event Queue

--02-F-05. Complexity of Status Structure

-F. BO Algorithm: Analysis--作业

-G. Convex Polygon Intersection Detection

--02-G-01. Problem Specification

--02-G-02. Monotone Partitioning

--02-G-03. Criterion

--02-G-04. Decrease-And-Conquer

--02-G-05. Example Cases

--02-G-06. Complexity

-G. Convex Polygon Intersection Detection--作业

-H. Edge Chasing

--02-H-01. Eliminating Sickles

--02-H-02. Example

--02-H-03. Analysis

-H. Edge Chasing--作业

-I. Plane Sweeping

--02-I. Plane Sweeping

-I. Plane Sweeping--作业

-J. Halfplane Intersection Construction

--02-J-01. The Problem

--02-J-02. Lower Bound

--02-J-03. Divide-And-Conquer

-J. Halfplane Intersection Construction--作业

03. Triangulation

-0. Methodology

--03-0. Methodology

-0. Methodology--作业

-A. Art Gallery Problem

--03-A-01. Definition

--03-A-02. Lower & Upper Bounds

--03-A-03. Hardness

--03-A-04. Approximation & Classification

-A. Art Gallery Problem--作业

-B. Art Gallery Theorem

--03-B-01. Necessity of floor(n/3)

--03-B-02. Sufficiency by Fan Decomposition

-B. Art Gallery Theorem--作业

-C. Fisk's Proof

--03-C-01. Triangulation

--03-C-02. 3-Coloring

--03-C-03. Domination

--03-C-04. Pigeon-Hole Principle

--03-C-05. Generalization

-C. Fisk's Proof--作业

-D. Orthogonal Polygons

--03-D-01. Necessity of floor(n/4)

--03-D-02. Sufficiency by Convex Quadrilateralization

--03-D-03. Generalization

-D. Orthogonal Polygons--作业

-E. Triangulation

--03-E-01. Existence

--03-E-02. Ear & Mouth

--03-E-03. Two-Ear Theorem

--03-E-04. Well-Order

--03-E-05. Ear Candidate

--03-E-06. Induction

--03-E-07. Well-Order (Again)

--03-E-08. Properties

-E. Triangulation--作业

-F. Triangulating Monotone Polygons

--03-F-01. Monotone Polygon

--03-F-02. Monotonicity Testing

--03-F-03. Strategy

--03-F-04. Stack-Chain Consistency

--03-F-05. Same Side + Reflex

--03-F-06. Same Side + Convex

--03-F-07. Opposite Side

--03-F-08. Example

--03-F-09. Analysis

-F. Triangulating Monotone Polygons--作业

-G. Monotone Decomposition

--03-G-01. Cusps

--03-G-02. Helper

--03-G-03. Helper Candidate

--03-G-04. Sweep-Line Status

--03-G-05. Possible Cases

--03-G-06. Example

--03-G-07. Analysis

-G. Monotone Decomposition--作业

-I. Tetrahedralization

--03-I-01. Polyhedron Decomposition

--03-I-02. Schonhardt's Polyhedron

--03-I-03. Seidel's Polygon

-I. Tetrahedralization--作业

04. Voronoi Diagram

-A. Introduction

--04-A-01. A First Glance

--04-A-02. Dining Halls on Campus

--04-A-03. More Analogies & Applications

--04-A-04. Voronoi

-A. Introduction--作业

-B. Terminologies

--04-B-01. Site & Cell

--04-B-02. Intersecting Halfspaces

--04-B-03. Voronoi Diagram

--04-B-04. Planar Voronoi Diagram

-B. Terminologies--作业

-C. Properties

--04-C-01. Non-Empty Cells

--04-C-02. Empty Disks

--04-C-03. Nearest = Concyclic

--04-C-04. Number of Nearest Sites = Degree

--04-C-05. Split & Merge

-C. Properties--作业

-D. Complexity

--04-D-01. Linearity

--04-D-02. Proof

-D. Complexity--作业

-E. Representation

--04-E-01. Subdivision

--04-E-02. Fary's Theorem

--04-E-03. Representing VD

-E. Representation--作业

-F. DCEL

--04-F-01. Twin Edges

--04-F-02. Half-Edge

--04-F-03. Vertex & Face

--04-F-04. Traversal

--04-F-05. True Or False

--04-F-06. Application

-F. DCEL--作业

-G. Hardness

--04-G-01. 1D Voronoi Diagram

--04-G-02. 2D Voronoi Diagram

--04-G-03. Voronoi Diagram In General Position

-G. Hardness--作业

-H. Sorted Sets

--04-H-01. Convex Hull Made Easier

--04-H-02. Convex Hull As A Combinatorial Structure

--04-H-03. Voronoi Diagram As A Geometric Structure

-H. Sorted Sets--作业

-I. VD_sorted

--04-I-01. ε-Closeness

--04-I-02. Lifting

--04-I-03. Projection

--04-I-04. Case A

--04-I-05. Case B

--04-I-06. Sorting Not Made Easier

-I. VD_sorted--作业

-J. Naive Construction

--J. Naive Construction

-J. Naive Construction--作业

-K. Incremental Construction

--04-K-01. Royal Garden

--04-K-02. Disjoint Union

--04-K-03. Complexity

-K. Incremental Construction--作业

-L. Divide-And-Conquer

--04-L-01. Strategy

--04-L-02. Solving Overlaps

--04-L-03. Contour

--04-L-04. Bisectors

--04-L-05. Y-Monotonicity

--04-L-06. Common Tangents

--04-L-07. Contour Length

--04-L-08. Clip & Stitch

--04-L-09. Intersecting with Cells

--04-L-10. Convexity

--04-L-11. Avoiding Rescans

-L. Divide-And-Conquer--作业

-M. Plane-Sweep

--04-M-01. A First Glance

--04-M-02. Backtracking

--04-M-03. Fortune's Trick

--04-M-04. Frozen Region

--04-M-05. Beach Line

--04-M-06. Lower Envelope

--04-M-07. Break Points

--04-M-08. Events

--04-M-09. Circle Event: What, When & Where

--04-M-10. Circle Event: Why

--04-M-11. Circle Event: How

--04-M-12. Site Event: What

--04-M-13. Site Event: How

-M. Plane-Sweep--作业

05. Delaunay Triangulation

-A. Point Set Triangulation

--05-A-01. Definition

--05-A-02. Edge Flipping

--05-A-03. Upper Bound

--05-A-04. Lower Bound

-A. Point Set Triangulation--作业

-B. Delaunay Triangulation

--05-B-01. Dual Graph

--05-B-02. Triangulation

--05-B-03. Hardness

--05-B-04. History

-B. Delaunay Triangulation--作业

-C. Properties

--05-C-01. Empty Circumcircle

--05-C-02. Empty Circle

--05-C-03. Nearest Neighbor

--05-C-04. Complexity

-C. Properties--作业

-D. Proximity Graph

--05-D-01. Gabriel Graph

--05-D-02. Relative Neighborhood Graph

--05-D-03. Lower Bounds

-D. Proximity Graph--作业

-E. Euclidean Minimum Spanning Tree

--05-E-01. Definition

--05-E-02. Construction

--05-E-03. Subgraph of RNG

--05-E-04. Example

-E. Euclidean Minimum Spanning Tree--作业

-F. Euclidean Traveling Salesman Problem

--05-F-01. Definition

--05-F-02. NP-Hardness

--05-F-03. Approximation

-G. Minimum Weighted Triangulation

--05-G-01. Definition

--05-G-02. Counter-Example

--05-G-03. Hardness

-G. Minimum Weighted Triangulation--作业

-H. Construction

--05-H-01. Subtended Arc

--05-H-02. Angle Vector

--05-H-03. Maximizing The Minimum Angle

--05-H-04. Evolution By Edge Flipping

--05-H-05. Strategies

-H. Construction--作业

-I. RIC With Example

--05-I-01. Idea

--05-I-02. Point Location

--05-I-03. In-Circle Test

--05-I-04. Edge Flipping

--05-I-05. Frontier

--05-I-06. Convergence

-I. RIC With Example--作业

-J. Randomized Incremental Construction

--05-J-01. Recursive Implementation

--05-J-02. Iterative Implementation

--05-J-03. In-Circle Test

--05-J-04. Point Location

-J. Randomized Incremental Construction--作业

-K. RIC Analysis

--05-K-01. Time Cost

--05-K-02. Backward Analysis

--05-K-03. Preconditions

--05-K-04. Types Of Edge Change

--05-K-05. Number Of Edge Changes

--05-K-06. Average Degree

--05-K-07. Number Of Rebucketings

--05-K-08. Probability For Rebucketing

--05-K-09. Expectation

--05-K-10. Further Consideration

06. Point Location

-0. Online/Offline Algorithms

--06-0. Online/Offline Algorithms

-0. Online/Offline Algorithms--作业

-A. Introduction

--06-A-01. Where Am I

--06-A-02. Point Location

--06-A-03. Assumptions For Clarity

--06-A-04. Input Size

--06-A-05. Performance Measurements

--06-A-06. A Global View

-A. Introduction--作业

-B. Slab Method

--06-B-01. Slab Decomposition

--06-B-02. Ordering Trapezoids

--06-B-03. Tree of Trees

--06-B-04. Example

--06-B-05. Query Time

--06-B-06. Preprocessing Time

--06-B-07. Storage Cost

--06-B-08. Worst Case

-B. Slab Method--作业

-C. Persistence

--06-C-01. Ephemeral Structure

--06-C-02. Persistent Structure

--06-C-03. Persistent Slabs

-C. Persistence--作业

-D. Path Copying

--06-D-01. Strategy

--06-D-02. X-Search

--06-D-03. Storage Optimization

-D. Path Copying--作业

-E. Node Copying

--06-E-01. O(1) Rotation

--06-E-02. Strategy

--06-E-03. Why Red-Black

--06-E-04. Linear Space

--06-E-05. Time Penalty

-E. Node Copying--作业

-F. Limited Node Copying

--06-F-01. Idea

--06-F-02. Split

--06-F-03. Complexity

--06-F-04. Recoloring

-G. Kirkpatrick Structure

--06-G-01. Optimal And Simpler

--06-G-02. Triangulation

--06-G-03. Example

--06-G-04. Hierarchy

--06-G-05. Independent Subset

--06-G-06. The More The Better

--06-G-07. The Fewer The Better

--06-G-08. Degree

--06-G-09. Existence Of Independent Subset

--06-G-10. Construction Of Independent Subset

--06-G-11. DAG

-G. Kirkpatrick Structure--作业

-H. Trapezoidal Map

--06-H-01. Ray Shooting

--06-H-02. Decomposition

--06-H-03. Properties & Complexity

--06-H-04. Search Structure: Example

--06-H-05. Search Structure: Nodes

--06-H-06. Search Structure: Performance

-H. Trapezoidal Map--作业

-I. Constructing Trapezoidal Map

--06-I-01. Initialization

--06-I-02. Iteration

--06-I-03. Challenges

--06-I-04. Case 1: Two Endpoints

--06-I-05. Case 2: One Endpoint

--06-I-06. Case 3: No Endpoints

--06-I-07. Example

-J. Performance Of Trapezoidal Map

--06-J-01. Randomization

--06-J-02. Expectation

--06-J-03. Number Of Ray Trimmed

--06-J-04. Number Of Trapezoidals Created (1)

--06-J-05. Number Of Trapezoidals Created (2)

--06-J-06. Time For Point Location

--06-J-07. Size Of Search Structure

--06-J-08. Fixed Query Point + Randomly Created Maps

--06-J-09. Each Single Step

--06-J-10. Probability Of Enclosing Trapezoid Changed

--06-J-11. Query Time

07. Geometric Range Search

-A. Range Query

--07-A-01. 1-Dimensional Range Query

--07-A-02. Brute-force

--07-A-03. Binary Search

--07-A-04. Output Sensitivity

--07-A-05. Planar Range Query

-A. Range Query--作业

-B. BBST

--07-B-01. Structure

--07-B-02. Lowest Common Ancestor

--07-B-03. Query Algorithm

--07-B-04. Complexity (1)

--07-B-05. Complexity (2)

-B. BBST--作业

-C. kd-Tree: Structure

--07-C-01. 2d-Tree

--07-C-02. Example

--07-C-03. Construction

--07-C-04. Example

--07-C-05. Canonical Subsets

-C. kd-Tree: Structure--作业

-D. kd-Tree: Algorithm

--07-D-01. Query

--07-D-02. Example

--07-D-03. Optimization

-D. kd-Tree: Algorithm--作业

-E. kd-Tree: Performance

--07-E-01. Preprocessing Time + Storage

--07-E-02. Query Time

--07-E-03. Beyond 2D

-E. kd-Tree: Performance--作业

-F. Range Tree: Structure

--07-F-01. x-Query + y-Query

--07-F-02. Worst Case

--07-F-03. x-Query * y-Queries

-F. Range Tree: Structure--作业

-G. Range Tree: Query

--07-G-01. Painters' Strategy

--07-G-02. X-Tree

--07-G-03. Y-Trees

--07-G-04. Algorithm

-G. Range Tree: Query--作业

-H. Range Tree: Performance

--07-H-01. Storage

--07-H-02. Preprocessing Time

--07-H-03. Query Time

--07-H-04. Beyond 2D

-H. Range Tree: Performance--作业

-I. Range Tree: Optimization

--07-I-01. Y-Lists

--07-I-02. Coherence

--07-I-03. Idea

--07-I-04. Fractional Cascading

--07-I-05. Complexity

08. Windowing Query

-A. Orthogonal Windowing Query

--08-A-01. Definition

--08-A-02. Classification

-A. Orthogonal Windowing Query--作业

-B. Stabbing Query

--08-B-01. 1D Windowing Query

--08-B-02. Stabbing Query

-C. Interval Tree: Construction

--08-C-01. Median

--08-C-02. Partitioning

--08-C-03. Balance

--08-C-04. Associative Lists

--08-C-05. Complexity

-C. Interval Tree: Construction--作业

-D. Interval Tree: Query

--08-D-01. Algorithm (1)

--08-D-02. Algorithm (2)

--08-D-03. Complexity

-D. Interval Tree: Query--作业

-E. Stabbing With A Segment

--08-E-01. Definition

--08-E-02. Interval Tree

--08-E-03. Query Algorithm (1)

--08-E-04. Query Algorithm (2)

--08-E-05. Overview

--08-E-06. Complexity

-F. Grounded Range Query

--08-F-01. O(n) Space

--08-F-02. 2D-GRQ

--08-F-03. 1D-GRQ Using Range Tree

--08-F-04. 1D-GRQ By Linear Scan

-G. 1D-GRQ Using Heap

--08-G-01. Heap

--08-G-02. Query

--08-G-03. Example

--08-G-04. Complexity

-G. 1D-GRQ Using Heap--作业

-H. Priority Search Tree

--08-H-01. PST = Heap + BBST

--08-H-02. Order Property

--08-H-03. Sibling Partitioning

--08-H-04. Construction

-H. Priority Search Tree--作业

-I. 2D-GRQ Using PST

--08-I-01. Algorithm (1/2)

--08-I-02. Algorithm (2/2)

--08-I-03. Example (1/3)

--08-I-04. Example (2/3)

--08-I-05. Example (3/3)

--08-I-06. Query Time (1/3)

--08-I-07. Query Time (2/3)

--08-I-08. Query Time (3/3)

-I. 2D-GRQ Using PST--作业

-J. Segment Tree

--08-J-01. General Windowing Query

--08-J-02. Elementary Interval

--08-J-03. Discretization

--08-J-04. Worst Case

--08-J-05. BBST

--08-J-06. Solving Stabbing Query

--08-J-07. Worst Case

--08-J-08. Common Ancestor

--08-J-09. Canonical Subsets

--08-J-10. O(nlogn) Space

--08-J-11. Constructing A Segment Tree

--08-J-12. Inserting A Segment (1)

--08-J-13. Inserting A Segment (2)

--08-J-14. Inserting A Segment (3)

--08-J-15. Query Algorithm

--08-J-16. Query Time

-K. Vertical Segment Stabbing Query

--08-K-01. Review

--08-K-02. X-Segment Tree

--08-K-03. Associative Structure

--08-K-04. Vertical Segment Stabbing Query

03-C-05. Generalization笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。