当前课程知识点:计算几何 >  03. Triangulation >  E. Triangulation >  03-E-06. Induction

返回《计算几何》慕课在线视频课程列表

03-E-06. Induction在线视频

03-E-06. Induction

下一节:03-E-07. Well-Order (Again)

返回《计算几何》慕课在线视频列表

03-E-06. Induction课程教案、知识点、字幕

现在我们就来考虑

刚才的这样的一个凸点

以及它的前和后的两个邻居

我们不妨给它编号叫I和K

我们来考虑这个三角形I J K

会有什么情况呢

你希望什么情况呢

联想到耳朵以及耳朵的性质

你肯定会想到

我希望这是一个空的三角形

也就是说它的内部

我不希望有第四个点

如果是这样

那么它就是一只耳朵

于是你就可以沿着这条边

对它进行降解

那它会不会是空的呢

取决于运气

我们说无论如何

我们至少能找到一条

像这样的一个内对角线

它有的时候是耳根的那条线

有的时候也可能是其它形式

无论如何必然会存在

我们说两种情况

第一确实如果它是空的

并且相应的它就是一个耳朵

那么显然我们就找到了

这样一条内对角线

什么叫内对角线

它完全的落在多边形的内部

所以我们沿着它

做一个切割的话

就可以把这个多边形

确实会分解成更小的部分

而这种情况

我们大概可以认为

是一个最简单的多边形

以及加上规模上讲

简易的一个多边形

这是一种好的情况

但是刚才说了

取决于你的运气

未必能这样

在更多的情况下

我们可能会运气很糟

可能会有另外的点

落在这个三角形的内部

比如说这样

可能会有第四个

甚至有第五个 第六个

很多个点

同时落在这个三角形的内部

这个时候又当如何处理呢

在这个时候

我们可以来取一个极值

什么极值呢

我们可以来考虑

刚才的第四 第五以及第六

所有的那些可能落在

这个三角形内部的那些点

到这条对角线的距离

我们将其中距离最大者取出来

并且给它起名字叫M

M实际上隐含的意思是指maximum

对应于最大的距离

也就是说M离I K这条线

距离是最远的

请注意因为整个的点数是有限的

所以这个最远的点

必然是确定存在的

那么好 问题来了

在这种情况下又当如何找到

我们刚才所说的一条内对角线

从而完成对这个多边形的降解呢

其实你已经看出来了 没错

这个时候我们要考虑的

就是M和J之间的那条连线

我们说它必然就是在这种情况下

一个合格的内对角线

为什么呢

我们可以用反正

就来考察J M这条线

假设它不是一条内对角线

那么就意味着

必然有另外一段边界

将它给阻挡 block住了

这个时候我们来考察

这条阻挡它的那段线的两个端点

我们可以发现

这两个端点到I K的距离

不可能同时小于M到I K的距离

而我们刚才刚刚做过假设

M是到I K的距离中的最大者

所以这就说明有矛盾

总而言之在这种情况下

我们也确实可以找到

一条内对角线

概括一下

无论是第一种情况

还是第二种情况

我们都可以在这个多边形中

找到一条内对角线

这意味着什么呢

这意味着我们

如果沿着这条内对角线

做一次切割

就可以把原来的多边形P

分割为更简单的部分

听清楚了

我说的是更简单的部分

并没有说有多少个

为什么呢

你可能直觉会认为是两个

但实际上并不见得是这样

计算几何课程列表:

00. Introduction

-Before we start

--html

-Evaluation

--html

-Online Judge

--html

-Lecture notes

--html

-Discussion

--html

-A. History of This Course

--00-A. History of This Course

-B. What's Computational Geometry

--00-B. What's Computational Geometry

-B. What's Computational Geometry--作业

-C. How to Learn CG Better

--00-C. How to Learn CG Better

-C. How to Learn CG Better--作业

-D. Why English

--00-D. Why English

01. Convex Hull

-A. Convexity

--01-A-01. Why Convex Hull

--01-A-02. Nails In The Table

--01-A-03. Paint Blending

--01-A-04. Color Space

--01-A-05. Convex Hull

-A. Convexity--作业

-B. Extreme Points

--01-B-01. Extremity

--01-B-02. Strategy

--01-B-03. In-Triangle Test

--01-B-04. To-Left Test

--01-B-05. Determinant

-B. Extreme Points--作业

-C. Extreme Edges

--01-C-01. Definition

--01-C-02. Algorithm

--01-C-03. Demonstration

-C. Extreme Edges--作业

-D. Incremental Construction

--01-D-01. Decrease and Conquer

--01-D-02. In-Convex-Polygon Test

--01-D-03. Why Not Binary Search

--01-D-04. Support-Lines

--01-D-05. Pattern Of Turns

--01-D-06. Exterior/Interior

-D. Incremental Construction--作业

-E. Jarvis March

--01-E-01. Selectionsort

--01-E-02. Strategy

--01-E-03. Coherence

--01-E-04. To-Left Test

--01-E-05. Degeneracy

--01-E-06. Lowest-Then-Leftmost

--01-E-07. Implementation

--01-E-08. Output Sensitivity

-E. Jarvis March--作业

-F. Lower Bound

--01-F-01. Reduction

--01-F-02. CAO Chong's Methodology

--01-F-03. Transitivity

--01-F-04. Reduction: Input

--01-F-05. Reduction: Output

--01-F-06. Sorting ≤_N 2d-CH

-F. Lower Bound--作业

-G. Graham Scan: Algorithm

--01-G-01. Preprocessing

--01-G-02. Scan

--01-G-03. Simplest Cases

-G. Graham Scan: Algorithm--作业

-H. Graham Scan: Example

--01-H-01. Example (1/2)

--01-H-02. Example (2/2)

-H. Graham Scan: Example--作业

-I. Graham Scan: Correctness

--01-I-01. Left Turn

--01-I-02. Right Turn

--01-I-03. Presorting

-I. Graham Scan: Correctness--作业

-J. Graham Scan: Analysis

--01-J-01. Ω(n) Backtracks

--01-J-02. Planarity

--01-J-03. Amortization

--01-J-04. Simplification

-J. Graham Scan: Analysis--作业

-K. Divide-And-Conquer (1)

--01-K-01. Merge

--01-K-02. Common Kernel

--01-K-03. Interior

--01-K-04. Exterior

-K. Divide-And-Conquer (1)--作业

-L. Divide-And-Conquer (2)

--01-L-01. Preprocessing

--01-L-02. Common Tangents

--01-L-03. Topmost + Bottommost ?

--01-L-04. Stitch

--01-L-05. Zig-Zag

--01-L-06. Time Cost

--01-L-07. More Considerations

-L. Divide-And-Conquer (2)--作业

-M. Wrap-Up

--01-M. Wrap-Up

02. Geometric Intersection

-0. Introduction

--02-0. Introduction

-0. Introduction--作业

-A. Preliminary

--02-A-01. EU

--02-A-02. Min-Gap

--02-A-03. Max-Gap

--02-A-04. IEU

-A. Preliminary--作业

-B. Interval Intersection Detection

--02-B-01. Algorithm

--02-B-02. Lower Bound

-B. Interval Intersection Detection--作业

-C. Segment Intersection Reporting

--02-C-01. Brute-force

--02-C-02. Hardness

-C. Segment Intersection Reporting--作业

-D. BO Algorithm: Strategy

--02-D-01. Proximity & Separability

--02-D-02. Comparability & Ordering

--02-D-03. Data Structures

--02-D-04. Possible Cases

-D. BO Algorithm: Strategy--作业

-E. BO Algorithm: Implementation

--02-E-01. Degeneracy

--02-E-02. Event Queue

--02-E-03. Events & Operations

--02-E-04. Sweepline Status

-E. BO Algorithm: Implementation--作业

-F. BO Algorithm: Analysis

--02-F-01. Correctness

--02-F-02. Example

--02-F-03. Retesting

--02-F-04. Complexity of Event Queue

--02-F-05. Complexity of Status Structure

-F. BO Algorithm: Analysis--作业

-G. Convex Polygon Intersection Detection

--02-G-01. Problem Specification

--02-G-02. Monotone Partitioning

--02-G-03. Criterion

--02-G-04. Decrease-And-Conquer

--02-G-05. Example Cases

--02-G-06. Complexity

-G. Convex Polygon Intersection Detection--作业

-H. Edge Chasing

--02-H-01. Eliminating Sickles

--02-H-02. Example

--02-H-03. Analysis

-H. Edge Chasing--作业

-I. Plane Sweeping

--02-I. Plane Sweeping

-I. Plane Sweeping--作业

-J. Halfplane Intersection Construction

--02-J-01. The Problem

--02-J-02. Lower Bound

--02-J-03. Divide-And-Conquer

-J. Halfplane Intersection Construction--作业

03. Triangulation

-0. Methodology

--03-0. Methodology

-0. Methodology--作业

-A. Art Gallery Problem

--03-A-01. Definition

--03-A-02. Lower & Upper Bounds

--03-A-03. Hardness

--03-A-04. Approximation & Classification

-A. Art Gallery Problem--作业

-B. Art Gallery Theorem

--03-B-01. Necessity of floor(n/3)

--03-B-02. Sufficiency by Fan Decomposition

-B. Art Gallery Theorem--作业

-C. Fisk's Proof

--03-C-01. Triangulation

--03-C-02. 3-Coloring

--03-C-03. Domination

--03-C-04. Pigeon-Hole Principle

--03-C-05. Generalization

-C. Fisk's Proof--作业

-D. Orthogonal Polygons

--03-D-01. Necessity of floor(n/4)

--03-D-02. Sufficiency by Convex Quadrilateralization

--03-D-03. Generalization

-D. Orthogonal Polygons--作业

-E. Triangulation

--03-E-01. Existence

--03-E-02. Ear & Mouth

--03-E-03. Two-Ear Theorem

--03-E-04. Well-Order

--03-E-05. Ear Candidate

--03-E-06. Induction

--03-E-07. Well-Order (Again)

--03-E-08. Properties

-E. Triangulation--作业

-F. Triangulating Monotone Polygons

--03-F-01. Monotone Polygon

--03-F-02. Monotonicity Testing

--03-F-03. Strategy

--03-F-04. Stack-Chain Consistency

--03-F-05. Same Side + Reflex

--03-F-06. Same Side + Convex

--03-F-07. Opposite Side

--03-F-08. Example

--03-F-09. Analysis

-F. Triangulating Monotone Polygons--作业

-G. Monotone Decomposition

--03-G-01. Cusps

--03-G-02. Helper

--03-G-03. Helper Candidate

--03-G-04. Sweep-Line Status

--03-G-05. Possible Cases

--03-G-06. Example

--03-G-07. Analysis

-G. Monotone Decomposition--作业

-I. Tetrahedralization

--03-I-01. Polyhedron Decomposition

--03-I-02. Schonhardt's Polyhedron

--03-I-03. Seidel's Polygon

-I. Tetrahedralization--作业

04. Voronoi Diagram

-A. Introduction

--04-A-01. A First Glance

--04-A-02. Dining Halls on Campus

--04-A-03. More Analogies & Applications

--04-A-04. Voronoi

-A. Introduction--作业

-B. Terminologies

--04-B-01. Site & Cell

--04-B-02. Intersecting Halfspaces

--04-B-03. Voronoi Diagram

--04-B-04. Planar Voronoi Diagram

-B. Terminologies--作业

-C. Properties

--04-C-01. Non-Empty Cells

--04-C-02. Empty Disks

--04-C-03. Nearest = Concyclic

--04-C-04. Number of Nearest Sites = Degree

--04-C-05. Split & Merge

-C. Properties--作业

-D. Complexity

--04-D-01. Linearity

--04-D-02. Proof

-D. Complexity--作业

-E. Representation

--04-E-01. Subdivision

--04-E-02. Fary's Theorem

--04-E-03. Representing VD

-E. Representation--作业

-F. DCEL

--04-F-01. Twin Edges

--04-F-02. Half-Edge

--04-F-03. Vertex & Face

--04-F-04. Traversal

--04-F-05. True Or False

--04-F-06. Application

-F. DCEL--作业

-G. Hardness

--04-G-01. 1D Voronoi Diagram

--04-G-02. 2D Voronoi Diagram

--04-G-03. Voronoi Diagram In General Position

-G. Hardness--作业

-H. Sorted Sets

--04-H-01. Convex Hull Made Easier

--04-H-02. Convex Hull As A Combinatorial Structure

--04-H-03. Voronoi Diagram As A Geometric Structure

-H. Sorted Sets--作业

-I. VD_sorted

--04-I-01. ε-Closeness

--04-I-02. Lifting

--04-I-03. Projection

--04-I-04. Case A

--04-I-05. Case B

--04-I-06. Sorting Not Made Easier

-I. VD_sorted--作业

-J. Naive Construction

--J. Naive Construction

-J. Naive Construction--作业

-K. Incremental Construction

--04-K-01. Royal Garden

--04-K-02. Disjoint Union

--04-K-03. Complexity

-K. Incremental Construction--作业

-L. Divide-And-Conquer

--04-L-01. Strategy

--04-L-02. Solving Overlaps

--04-L-03. Contour

--04-L-04. Bisectors

--04-L-05. Y-Monotonicity

--04-L-06. Common Tangents

--04-L-07. Contour Length

--04-L-08. Clip & Stitch

--04-L-09. Intersecting with Cells

--04-L-10. Convexity

--04-L-11. Avoiding Rescans

-L. Divide-And-Conquer--作业

-M. Plane-Sweep

--04-M-01. A First Glance

--04-M-02. Backtracking

--04-M-03. Fortune's Trick

--04-M-04. Frozen Region

--04-M-05. Beach Line

--04-M-06. Lower Envelope

--04-M-07. Break Points

--04-M-08. Events

--04-M-09. Circle Event: What, When & Where

--04-M-10. Circle Event: Why

--04-M-11. Circle Event: How

--04-M-12. Site Event: What

--04-M-13. Site Event: How

-M. Plane-Sweep--作业

05. Delaunay Triangulation

-A. Point Set Triangulation

--05-A-01. Definition

--05-A-02. Edge Flipping

--05-A-03. Upper Bound

--05-A-04. Lower Bound

-A. Point Set Triangulation--作业

-B. Delaunay Triangulation

--05-B-01. Dual Graph

--05-B-02. Triangulation

--05-B-03. Hardness

--05-B-04. History

-B. Delaunay Triangulation--作业

-C. Properties

--05-C-01. Empty Circumcircle

--05-C-02. Empty Circle

--05-C-03. Nearest Neighbor

--05-C-04. Complexity

-C. Properties--作业

-D. Proximity Graph

--05-D-01. Gabriel Graph

--05-D-02. Relative Neighborhood Graph

--05-D-03. Lower Bounds

-D. Proximity Graph--作业

-E. Euclidean Minimum Spanning Tree

--05-E-01. Definition

--05-E-02. Construction

--05-E-03. Subgraph of RNG

--05-E-04. Example

-E. Euclidean Minimum Spanning Tree--作业

-F. Euclidean Traveling Salesman Problem

--05-F-01. Definition

--05-F-02. NP-Hardness

--05-F-03. Approximation

-G. Minimum Weighted Triangulation

--05-G-01. Definition

--05-G-02. Counter-Example

--05-G-03. Hardness

-G. Minimum Weighted Triangulation--作业

-H. Construction

--05-H-01. Subtended Arc

--05-H-02. Angle Vector

--05-H-03. Maximizing The Minimum Angle

--05-H-04. Evolution By Edge Flipping

--05-H-05. Strategies

-H. Construction--作业

-I. RIC With Example

--05-I-01. Idea

--05-I-02. Point Location

--05-I-03. In-Circle Test

--05-I-04. Edge Flipping

--05-I-05. Frontier

--05-I-06. Convergence

-I. RIC With Example--作业

-J. Randomized Incremental Construction

--05-J-01. Recursive Implementation

--05-J-02. Iterative Implementation

--05-J-03. In-Circle Test

--05-J-04. Point Location

-J. Randomized Incremental Construction--作业

-K. RIC Analysis

--05-K-01. Time Cost

--05-K-02. Backward Analysis

--05-K-03. Preconditions

--05-K-04. Types Of Edge Change

--05-K-05. Number Of Edge Changes

--05-K-06. Average Degree

--05-K-07. Number Of Rebucketings

--05-K-08. Probability For Rebucketing

--05-K-09. Expectation

--05-K-10. Further Consideration

06. Point Location

-0. Online/Offline Algorithms

--06-0. Online/Offline Algorithms

-0. Online/Offline Algorithms--作业

-A. Introduction

--06-A-01. Where Am I

--06-A-02. Point Location

--06-A-03. Assumptions For Clarity

--06-A-04. Input Size

--06-A-05. Performance Measurements

--06-A-06. A Global View

-A. Introduction--作业

-B. Slab Method

--06-B-01. Slab Decomposition

--06-B-02. Ordering Trapezoids

--06-B-03. Tree of Trees

--06-B-04. Example

--06-B-05. Query Time

--06-B-06. Preprocessing Time

--06-B-07. Storage Cost

--06-B-08. Worst Case

-B. Slab Method--作业

-C. Persistence

--06-C-01. Ephemeral Structure

--06-C-02. Persistent Structure

--06-C-03. Persistent Slabs

-C. Persistence--作业

-D. Path Copying

--06-D-01. Strategy

--06-D-02. X-Search

--06-D-03. Storage Optimization

-D. Path Copying--作业

-E. Node Copying

--06-E-01. O(1) Rotation

--06-E-02. Strategy

--06-E-03. Why Red-Black

--06-E-04. Linear Space

--06-E-05. Time Penalty

-E. Node Copying--作业

-F. Limited Node Copying

--06-F-01. Idea

--06-F-02. Split

--06-F-03. Complexity

--06-F-04. Recoloring

-G. Kirkpatrick Structure

--06-G-01. Optimal And Simpler

--06-G-02. Triangulation

--06-G-03. Example

--06-G-04. Hierarchy

--06-G-05. Independent Subset

--06-G-06. The More The Better

--06-G-07. The Fewer The Better

--06-G-08. Degree

--06-G-09. Existence Of Independent Subset

--06-G-10. Construction Of Independent Subset

--06-G-11. DAG

-G. Kirkpatrick Structure--作业

-H. Trapezoidal Map

--06-H-01. Ray Shooting

--06-H-02. Decomposition

--06-H-03. Properties & Complexity

--06-H-04. Search Structure: Example

--06-H-05. Search Structure: Nodes

--06-H-06. Search Structure: Performance

-H. Trapezoidal Map--作业

-I. Constructing Trapezoidal Map

--06-I-01. Initialization

--06-I-02. Iteration

--06-I-03. Challenges

--06-I-04. Case 1: Two Endpoints

--06-I-05. Case 2: One Endpoint

--06-I-06. Case 3: No Endpoints

--06-I-07. Example

-J. Performance Of Trapezoidal Map

--06-J-01. Randomization

--06-J-02. Expectation

--06-J-03. Number Of Ray Trimmed

--06-J-04. Number Of Trapezoidals Created (1)

--06-J-05. Number Of Trapezoidals Created (2)

--06-J-06. Time For Point Location

--06-J-07. Size Of Search Structure

--06-J-08. Fixed Query Point + Randomly Created Maps

--06-J-09. Each Single Step

--06-J-10. Probability Of Enclosing Trapezoid Changed

--06-J-11. Query Time

07. Geometric Range Search

-A. Range Query

--07-A-01. 1-Dimensional Range Query

--07-A-02. Brute-force

--07-A-03. Binary Search

--07-A-04. Output Sensitivity

--07-A-05. Planar Range Query

-A. Range Query--作业

-B. BBST

--07-B-01. Structure

--07-B-02. Lowest Common Ancestor

--07-B-03. Query Algorithm

--07-B-04. Complexity (1)

--07-B-05. Complexity (2)

-B. BBST--作业

-C. kd-Tree: Structure

--07-C-01. 2d-Tree

--07-C-02. Example

--07-C-03. Construction

--07-C-04. Example

--07-C-05. Canonical Subsets

-C. kd-Tree: Structure--作业

-D. kd-Tree: Algorithm

--07-D-01. Query

--07-D-02. Example

--07-D-03. Optimization

-D. kd-Tree: Algorithm--作业

-E. kd-Tree: Performance

--07-E-01. Preprocessing Time + Storage

--07-E-02. Query Time

--07-E-03. Beyond 2D

-E. kd-Tree: Performance--作业

-F. Range Tree: Structure

--07-F-01. x-Query + y-Query

--07-F-02. Worst Case

--07-F-03. x-Query * y-Queries

-F. Range Tree: Structure--作业

-G. Range Tree: Query

--07-G-01. Painters' Strategy

--07-G-02. X-Tree

--07-G-03. Y-Trees

--07-G-04. Algorithm

-G. Range Tree: Query--作业

-H. Range Tree: Performance

--07-H-01. Storage

--07-H-02. Preprocessing Time

--07-H-03. Query Time

--07-H-04. Beyond 2D

-H. Range Tree: Performance--作业

-I. Range Tree: Optimization

--07-I-01. Y-Lists

--07-I-02. Coherence

--07-I-03. Idea

--07-I-04. Fractional Cascading

--07-I-05. Complexity

08. Windowing Query

-A. Orthogonal Windowing Query

--08-A-01. Definition

--08-A-02. Classification

-A. Orthogonal Windowing Query--作业

-B. Stabbing Query

--08-B-01. 1D Windowing Query

--08-B-02. Stabbing Query

-C. Interval Tree: Construction

--08-C-01. Median

--08-C-02. Partitioning

--08-C-03. Balance

--08-C-04. Associative Lists

--08-C-05. Complexity

-C. Interval Tree: Construction--作业

-D. Interval Tree: Query

--08-D-01. Algorithm (1)

--08-D-02. Algorithm (2)

--08-D-03. Complexity

-D. Interval Tree: Query--作业

-E. Stabbing With A Segment

--08-E-01. Definition

--08-E-02. Interval Tree

--08-E-03. Query Algorithm (1)

--08-E-04. Query Algorithm (2)

--08-E-05. Overview

--08-E-06. Complexity

-F. Grounded Range Query

--08-F-01. O(n) Space

--08-F-02. 2D-GRQ

--08-F-03. 1D-GRQ Using Range Tree

--08-F-04. 1D-GRQ By Linear Scan

-G. 1D-GRQ Using Heap

--08-G-01. Heap

--08-G-02. Query

--08-G-03. Example

--08-G-04. Complexity

-G. 1D-GRQ Using Heap--作业

-H. Priority Search Tree

--08-H-01. PST = Heap + BBST

--08-H-02. Order Property

--08-H-03. Sibling Partitioning

--08-H-04. Construction

-H. Priority Search Tree--作业

-I. 2D-GRQ Using PST

--08-I-01. Algorithm (1/2)

--08-I-02. Algorithm (2/2)

--08-I-03. Example (1/3)

--08-I-04. Example (2/3)

--08-I-05. Example (3/3)

--08-I-06. Query Time (1/3)

--08-I-07. Query Time (2/3)

--08-I-08. Query Time (3/3)

-I. 2D-GRQ Using PST--作业

-J. Segment Tree

--08-J-01. General Windowing Query

--08-J-02. Elementary Interval

--08-J-03. Discretization

--08-J-04. Worst Case

--08-J-05. BBST

--08-J-06. Solving Stabbing Query

--08-J-07. Worst Case

--08-J-08. Common Ancestor

--08-J-09. Canonical Subsets

--08-J-10. O(nlogn) Space

--08-J-11. Constructing A Segment Tree

--08-J-12. Inserting A Segment (1)

--08-J-13. Inserting A Segment (2)

--08-J-14. Inserting A Segment (3)

--08-J-15. Query Algorithm

--08-J-16. Query Time

-K. Vertical Segment Stabbing Query

--08-K-01. Review

--08-K-02. X-Segment Tree

--08-K-03. Associative Structure

--08-K-04. Vertical Segment Stabbing Query

03-E-06. Induction笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。