当前课程知识点:线性代数(2) > 第十一讲:计算机图像 > 11.3 伸缩 > 11.3 伸缩
下面我们来看伸缩
伸缩变换呢
这个大家都应该比较熟悉
比如说大家在使用Office, Word的时候
我们当想把一个字放大缩小
一张图放大缩小
那这种变换呢
就是我们的伸缩变换
比如说一张图片
它的长度我们想变为
原来的3/4
宽度想变为原来的1/2
那么这个变换呢
就是把1/2 3/4
这样一个二阶矩阵呢
去乘上(x y)
那么三维空间中
也同样地乘这样一个对角阵
那么刚才我们平移
我们用了齐次坐标
那么这块我们也可以用齐次坐标
用齐次坐标
那么这样一个矩阵
就变成了一个深一个级的矩阵
一般情况我们可以看到
三维空间中
我们做这样一个变换
就是把横坐标
变成原来的c_1倍
纵坐标变成了原来的c_2倍
它的内坐标变为原来的c_3倍
那么这样一个变换呢
我们就可以用
(x' y' z')
等于c_1 c_2 c_3乘上(x y z)
那么如果我们把它写成
齐次形式以后呢
那么就是
(x' y' z' 1)
等于c1 c2 c3 1
乘上(x y z 1)
所以伸缩变换呢
实际上是一个对角阵
乘上原来的坐标
-1.1 实对称矩阵A正定的充要条件
-1.2 典型例题
--1.2 典型例题
-1.3 半正定矩阵及其判别条件
-1.4 二次型
--1.4 二次型
-1.5* 有心二次曲线(central conic)
-1.6* 三维空间中的二次曲面-6类基本的二次曲面
-1.7 二次型的分类
-1.8 矩阵的合同
-1.9* 惯性定理的证明
-1.10 惯性定理的应用 —— 实对称矩阵的特征值与主元符号
--1.10 惯性定理的应用 —— 实对称矩阵的特征值与主元符号
-1.11* 正(负)定矩阵在函数极值问题中的应用
-第一讲:正定矩阵--课后习题
-2.1 引言
--2.1 引言
-2.2 相似矩阵的性质
-2.3 Jordan标准形
-2.4 定理的证明
-2.5 Jordan标准形的应用
-第二讲:相似矩阵--课后习题
-3.1 引言
--3.1 引言
-3.2 奇异值分解(Singular Value Decomposition)
--3.2 奇异值分解(Singular Value Decomposition)
-3.3 例题
--3.3 例题
-3.4 奇异值分解的应用
-第三讲:奇异值分解--课后习题
-4.1 线性变换的定义和性质
-4.2 线性变换的运算
-4.3 线性变换的矩阵表示
-4.4 线性变换与矩阵之间的关系
-第四讲:线性变换 I--课后习题
-5.1 恒同变换与基变换
-5.2 图像压缩——基变换的应用
-5.3 线性变换在不同基下的矩阵
-5.4 矩阵分解与基变换
-5.5 线性变换的核与像
-5.6 不变子空间
-5.7* 幂零变换
-5.8* Jordan标准形
-第五讲:线性变换 II--课后习题
-6.1 伪逆
--6.1 伪逆
-6.2 Moore – Penrose 伪逆
-6.3 最小二乘法
-第六讲:伪逆--课后习题
-7.1 简介
--7.1 简介
-7.2 弹簧模型
--7.2 弹簧模型
-7.3 变量的线性关系
-7.4 刚度矩阵
--7.4 刚度矩阵
-7.5 从离散到连续
-第七讲:工程中的矩阵--课后习题
-8.1 简介
--8.1 简介
-8.2 图和矩阵
--8.2 图和矩阵
-8.3 网络和加权Laplacian矩阵
-8.4 关联矩阵的四个基本子空间
-8.5 注记
--8.5 注记
-第八讲:图与网络--课后习题
-9.1 问题引入
--9.1 问题引入
-9.2 Markov矩阵
-9.3 正Markov矩阵
-9.4 正矩阵
-第九讲:Markov矩阵和正矩阵--课后习题
-10.1 引言
--10.1 引言
-10.2 内积空间
-10.3 傅里叶级数
-10.4 投影
--10.4 投影
-10.5 关于Fourier变换的注记
-第十讲:Fourier级数--课后习题
-11.1 引言
--11.1 引言
-11.2 平移
--11.2 平移
-11.3 伸缩
--11.3 伸缩
-11.4 旋转
--11.4 旋转
-11.5 投影和反射
-第十一讲:计算机图像--课后习题
-12.1 引言
--12.1 引言
-12.2 复矩阵
--12.2 复矩阵
-12.3 复正规阵
-12.4 离散Fourier变换
-12.5 快速Fourier变换
-第十二讲:复数与复矩阵--课后习题
-结课寄语
--结课寄语