当前课程知识点:数据结构(下) >  第七章 二叉搜索树 >  (d2)AVL树:插入 >  07D2-1 插入:单旋

返回《数据结构(下)》慕课在线视频课程列表

07D2-1 插入:单旋在线视频

07D2-1 插入:单旋

下一节:07D2-2 插入:双旋

返回《数据结构(下)》慕课在线视频列表

07D2-1 插入:单旋课程教案、知识点、字幕

首先来考察插入操作的第一种情景

我们在某个节点原本已经更高的分支

插入了一个新的节点

这个分支的高度继续上升一层

从而导致它的平衡因子

从-1变成-2

突破了AVL树的底线

请注意 新的节点

可能插入在这儿

也可能插入在这儿

我们在它们之间引入一条虚线

表示二者只能取其中之一

而且我们假设g是所有因此

而发生失衡的祖先中

最深的那个

那么从g出发

沿着这个新增长的分支

我们可以找到它的孩子节点

以及孙子节点

我们将它们分别命名为v p和g

分别暗示着是一个节点

以及它的父亲parent

以及祖父grandparent

根据这样的命名方式 我们也不难理解

尽管一个节点的插入

有可能会导致多个祖先的失衡

其中最低的那个

也不会低于它的祖父辈

那么既然此处已经发生了失衡

我们又当如何令它重新恢复平衡呢?

实际上 我们能做的无非是上一节

所介绍的等价变换

也就是zig或者是zag旋转

在此处 我们只需要做一次旋转

也就是所谓的单旋

我们来通过下面这个动画

了解整个调整的过程

从我们刚才失衡的局部出发

接下来我们要围绕着

失衡的节点g

做一次逆时针的zag旋转

这样的一个旋转

可以由接下来的几步组合完成

首先引入一个临时的引用

指向节点p

接下来 我们要令p的左子树T1

成为g的右子树

为此我们只需这样调整

再接下来 我们要令g

成为p的左孩子

因此需要做这样的调整

再接下来 我们要将局部子树的根

由g替换为p 也就是说

我们要做这样的调整

好 此时的临时引用

也完成了历史使命

它可以退出了

而旋转操作

也同时宣告完成

至此重平衡化已经完成

为了更清楚地看到平衡化之后的效果

我们不妨对这个图稍事整理

不难验证 局部的这棵子树

的确已经恢复了平衡

然而好消息还不止一次

实际上 如果在此前g以上

还有其它的祖先

同时发生失衡

那么在这个局部重新恢复平衡之后

也会同时一揽子地重新获得平衡

你能看出这背后的原因吗?

在此你不妨暂停片刻

就这个问题做一思考

好的 我想你已经找到答案了

没错 在这里除了平衡因子以外

局部子树还有一个重要的指标

就是它的高度

那么 它的高度是在哪呢?

请留意这里我们所设置的三条基准线

不难发现 在插入新节点之前

原先这棵子树的高度

应该是以中间这条水平线为基准

然而对照重新平衡之后的

这棵树我们会发现

它的高度又重新地回到了

这样一条基准线上

这棵局部子树的高度能够复原

又意味着什么呢?

我们说这意义非常重大

这意味着它的所有祖先

在计算平衡因子时 所得的结果

也将与插入新节点之前 完全一样

换而言之

在局部子树高度复原之后

所有祖先也必然会

统一地恢复平衡

而全树呢 也将因此恢复平衡

请注意 对于这种情况

我们无非是做了一次zag旋转

这种旋转只涉及到局部的常数个节点

因此它所对应的时间消耗

应该是O(1)的

这个结果也再好不过了

当然这种情况只是所有情况中的一种

其特点是我们刚才所定义的gpv

这连续三代的节点

在方向上是朝向一致的

比如这里它们同时向右

所以我们也相应地称之为zag-zag

不难理解 对于对称的情况

也就是它们一致向左的情况

同样可以参照这种方法予以处理

那种情况我们也称作zig-zig

那么如果它们的朝向并不一致

而是呈所谓的之字形形式呢?

数据结构(下)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第七章 二叉搜索树

-(a)概述

--07A-1 纵览

--07A-2 循关键码访问

--07A-3 有序性

--07A-4 单调性

--07A-5 接口

-(a)概述--作业

-(b1)BST:查找

--07B1-1 概述

--07B1-2 查找:算法

--07B1-3 查找:理解

--07B1-4 查找:实现

--07B1-5 查找:语义

-第七章 二叉搜索树--(b1)BST:查找

-(b2)BST:插入

--07B2-1 插入:算法

--07B2-2 插入:实现

-(b2)BST:插入--作业

-(b3)BST:删除

--07B3-1 删除:框架

--07B3-2 删除:单分支

--07B3-3 删除:双分支

--07B3-4 删除:复杂度

-第七章 二叉搜索树--(b3)BST:删除

-(c)平衡与等价

--07C-1 极端退化

--07C-2 平均高度

--07C-3 理想+适度

--07C-4 歧义=等价

--07C-5 等价变换

-(c)平衡与等价--作业

-(d1)AVL树:重平衡

--07D1-1 AVL=BBST

--07D1-2 平衡因子

--07D1-3 适度平衡

--07D1-4 接口

--07D1-5 失衡+复衡

-第七章 二叉搜索树--(d1)AVL树:重平衡

-(d2)AVL树:插入

--07D2-1 插入:单旋

--07D2-2 插入:双旋

--07D2-3 插入:实现

-(d2)AVL树:插入--作业

-(d3)AVL树:删除

--07D3-1 删除:单旋

--07D3-2 删除:双旋

--07D3-3 删除:实现

-(d3)AVL树:删除--作业

-(d4)AVL树:(3+4)-重构

--07D4-1 ”3+4“重构

--07D4-2 ”3+4“实现

--07D4-3 rotateAt()

--07D4-4 综合评价

-(d4)AVL树:(3+4)-重构--作业

-本章测验

--章节测验

第八章 高级搜索树(上)

-(a1)伸展树:逐层伸展

--08A1-1 宽松平衡

--08A1-2 局部性

--08A1-3 自适应调整

--08A1-4 逐层伸展

--08A1-5 实例

--08A1-6 一步一步往上爬

--08A1-7 最坏情况

--习题

-(a2)伸展树:双层伸展

--08A2-1 双层伸展

--08A2-2 子孙异侧

--08A2-3 子孙同侧

--08A2-4 点睛之笔

--08A2-5 折叠效果

--08A2-6 分摊性能

--08A2-7 最后一步

--习题

-(a3)伸展树:算法实现

--08A3-1 功能接口

--08A3-2 伸展算法

--08A3-3 四种情况

--08A3-4 查找算法

--08A3-5 插入算法

--08A3-6 删除算法

--08A3-7 综合评价

--习题

-(b1)B-树:动机

--08B1-1 640KB

--08B1-2 越来越大的数据

--08B1-3 越来越小的内存

--08B1-4 一秒与一天

--08B1-5 分级I/O

--08B1-6 1B = 1KB

--习题

-(b2)B-树:结构

--08B2-1 观察体验

--08B2-2 多路平衡

--08B2-3 还是I/O

--08B2-4 深度统一

--08B2-5 阶次含义

--08b2-6: 紧凑表示

--08B2-7 BTNode

--08B2-8 BTree

--习题

-(b3)B-树:查找

--08B3-1 算法过程

--08B3-2 操作实例

--08B3-3 算法实现

--08B3-4 主次成本

--08B3-5 最大高度

--08B3-6 最小高度

--习题

第八章 高级搜索树(下)

-(b4)B-树: 插入

--08B4-1 算法框架

--08B4-2 分裂

--08B4-3 再分裂

--08B4-4 分裂到根

--08B4-5: 实例演示

--习题

-(b5)B-树: 删除

--08B5-1 算法框架

--08B5-2 旋转

--08B5-3 合并

--08B5-4 实例演示

--08B5-5 道法自然

--习题

-(xa1)红黑树:动机

--08XA1-1 观察体验

--08XA1-2 持久性

--08XA1-3 关联性

--08XA1-4 O(1)重构

--习题

-(xa2)红黑树:结构

--08XA2-1 定义规则

--08XA2-2 实例验证

--08XA2-3 提升变换

--08XA2-4 末端节点

--08XA2-5 红黒树,即是B-树

--08XA2-6 平衡性

--08xa2-7: 接口定义

--习题

-(xa3)红黑树:插入

--08XA3-1 以曲为直

--08XA3-2 双红缺陷

--08XA3-3 算法框架

--08XA3-4 RR-1

--08XA3-5 RR-2

--08XA3-6 归纳回味

--习题

-(xa4)红黑树:删除

--08XA4-1 以曲为直

--08XA4-2 算法框架

--08XA4-3 双黑缺陷

--08XA4-4 BB-1

--08XA4-5 反观回味

--08XA4-6 BB-2R

--08XA4-7 BB-2B

--08XA4-8 BB-3

--08xa4-9: 归纳体味

-本章测验

--习题

第九章 词典

-(b)散列:原理

--09B-1 从服务到电话

--09B-2 循值访问

--09B-3 数组

--09B-4 原理

--09B-5 散列

--09B-6 冲突

--习题

-(c)散列:散列函数

--09C-1 冲突难免

--09C-2 何谓优劣

--09C-3 整除留余

--09C-4 以蝉为师

--09C-5 M+A+D

--09C-6 平方取中

--09C-7 折叠汇总

--09C-8 伪随机数

--09C-9 多项式

--09C-A Vorldmort

--09C-B DSA@THU

--习题

-(d1)散列:排解冲突(1)

--09D1-1 一山二虎

--09D1-2 泾渭分明

--09D1-3 开放定址

--09D1-4 线性试探

--09D1-5 懒惰删除

--习题

-(d2)散列:排解冲突(2)

--09D2-1 平方试探

--09D2-2 一利一弊

--09D2-3 至多半载

--09D2-4 M + Lemda

--09D2-5 双蜓点水

--09D2-6 4k + 3

--09D2-7 双平方定理

--09D2-8 泾渭分明

--习题

-(e)桶/计数排序

--09E-1 大数据 + 小范围

--09E-2 桶排序

--09E-3 计数排序

--习题

-本章测验

--本章测试

第十章 优先级队列

-(a1)需求与动机

--10a1-1: 应用需求

--10a1-2: 计算模式

--10a1-3: 功能接口

--习题

-(a2)基本实现

--10a2-1: 向量

--10a2-2: 有序向量

--10a2-3: BBST

--习题

-(b1)完全二叉堆:结构

--10b1-1: 完全二叉树

--10b1-2: 结构性

--10b1-3: 形具神备

--10b1-4: 堆序性

--习题

-(b2)完全二叉堆:插入与上滤

--10b2-1: 上滤

--10b2-2: 实例

--10b2-3: 实现

--10b2-4: 效率

--习题

-(b3)完全二叉堆:删除与下滤

--10b3-1: 算法

--10b3-2: 实例

--10b3-3: 实现

--10b3-4: 效率

--习题

-(b4)完全二叉堆:批量建堆

--10b4-1 : 自上而下的上滤:算法

--10b4-2: 自上而下的上滤:效率

--10b4-3: 自下而上的下滤:算法

--10b4-4 : 自下而上的下滤:实例

--10B4-5: 自下而上的下滤:效率

--习题

-(c)堆排序

--10c-1: 算法

--10c-2: 就地

--10c-3: 实现

--10c-4: 实例

--习题

-(xa1)左式堆:结构

--10xa-1: 第一印象

--10xa1-2: 堆之合并

--10xa1-3: 奇中求正

--10xa1-4: NPL

--10xa1-5: 左倾性

--10xa1-6: 左展右敛

--习题

-(xa2)左式堆:合并

--10xa2-1: LeftHeap模板类

--10xa2-2: 算法

--10xa2-3: 实现

--10xa2-4: 实例

--习题

-(xa3)左式堆:插入与删除

--10xa3-1: 插入即是合并

--10xa3-2: 删除亦是合并

-本章测验

--本章测试

第十一章 串(上)

-(a)ADT

--11a-1: 定义+特点

--11a-2: 术语

--11a-3: ADT

--习题

-(b1)串匹配

--11b1-1: 问题与需求

--11b1-2 算法测评

--习题

-(b2)蛮力匹配

--11b2-1: 构思

--11b2-2: 版本一

--11b2-3: 版本二

--11b2-4: 性能

--习题

-(c1)KMP算法:从记忆力到预知力

--11c1-1: 重复匹配的前缀

--11c1-2: 不变性

--11c1-3 : 记忆力

--11c1-4: 预知力

--习题

-(c2)KMP算法:查询表

--11c2-1: 制表备查

--11c2-2: 主算法

--11c2-3: 实例

--习题

-(c3)KMP算法:理解next[]表

--11c3-1: 快速移动

--11c3-2: 避免回溯

--11C3-3: 通配哨兵

--习题

-(c4)KMP算法:构造next[]表

--11c4-1: 递推

--11c4-2: 算法

--11c4-3: 实现

--习题

-(c5)KMP算法:分摊分析

--11c5-1: 失之粗糙

--11c5-2: 精准估计

--习题

-(c6)KMP算法:再改进

--11c6-1: 美中不足

--11c6-2: 以卵击石

--11c6-3: 前车之覆

--11c6-4 后车之鉴

--11c6-5 : 可视对比

第十一章 串(下)

-(d1)BM_BC算法:以终为始

--11d1-1: 不对称性

--11d1-2: 善待教训

--11d1-3: 前轻后重

--11d1-4: 以终为始

-(d2)BM_BC算法:坏字符

--11d2-1: 坏字符

--11d2-2: 特殊情况

-(d3)BM_BC算法:构造bc[]

--11d3: 画家策略

-(d4)BM_BC算法:性能分析

--11d4-1: 最好情况

--11d4-2: 最坏情况

-(e1)BM_GS算法:好后缀

--11e1-1: 兼顾经验

--11e1-2: 好后缀策略

--11e1-3: 实例体验

-(e2)BM_GS算法:构造gs表

--11e2: 构造gs表

-(e3)BM_GS算法:综合性能

--11e3-1: BM之性能

--11e3-2: 各算法纵览

-(f1)Karp-Rabin算法:串即是数

--11f1-1: 化串为数

--11f1-2: 凡物皆数

--11f1-3: 串亦是数

-(f2)Karp-Rabin算法:散列

--11f2-1: 数位溢出

--11f2-2: 散列压缩

--11f2-3: 应对冲突

--11f2-4: 指纹更新

-本章测验

--本章测试

第十二章 排序

-(a1)快速排序:算法A

--12a1-1: 分而治之

--12a1-2: 轴点

--12a1-3: 构造轴点

--12a1-4: 单调性 + 不变性

-- 12a1-5: 实例

--习题

-(a2)快速排序:性能分析

--12a2-1: 不稳定 + 就地

--12a2-2: 最好情况 + 最坏情况

--12a2-3: 平均情况

--习题

-(a4)快速排序:变种

--12a4-1: 不变性

--12a4-2: 单调性

--12a4-3: 实现

--12a4-4: 实例

--12a4-5: 时间 + 空间 + 稳定性

-(b1)选取:众数

--12b1-1: 选取 + 中位数

--12b1-2: 从中位数到众数

--12b1-3: 从频繁数到众数

--12b1-4: 减而治之

--12b1-5: 算法实现

-(b3)选取:通用算法

--12b3-1: 尝试

--12b3-2: quickSelect

--12b3-3: linearSelect:算法

--12b3-4: linearSelect:性能分析A

--12b3-5 : linearSelect:性能分析B

--12b3-6 : linearSelect:性能分析C

--习题

-(c1) 希尔排序:Shell序列

--12c1-1: 策略

--12c1-2: 实例

--12c1-3: 循秩访问

--12c1-4: 插入排序

--12c1-5: Shell序列

--习题

-(c2)希尔排序:逆序对

--12c2-1: 邮资问题

--12c2-2: 定理K

--12c2-3: 逆序对

-本章测验

--本章测试

07D2-1 插入:单旋笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。