当前课程知识点:数据结构(下) > 第八章 高级搜索树(上) > (a2)伸展树:双层伸展 > 08A2-6 分摊性能
通过刚才的那个实例不难发现 Tarjan所建议的这种新方法
具有某种意义上的路径折叠效果
具体来说 包括最坏节点在内的任何一个节点
一旦经过访问 再经过此后的双层调整之后
这个节点所对应的那条路径长度就会随即折减一半
我们甚至可以说 这种效果具有某种意义上的智能
既然在一棵BST中 我们非常忌讳很深的节点
那么这种折叠效果 自然就会具有对坏节点的修复作用
这就犹如含羞草那样 一旦它感受到威胁
就会通过迅速的收缩 将自己的弱点隐藏起来
因此在采用Tarjan所建议的这种新的策略之后
刚才所举的那种最坏情况 将不至持续的发生
实际上 可以严格的证明 按照新的策略 就分摊意义而言
单趟伸展操作所需要的时间 都不会超过logn
也就是说 我们现在不仅足以应对此前所涉及的那种最坏情况
而且也不会有任何其他的最坏情况
这是一个再好不过的消息了
-选课之前
--写在选课之前
--宣传片
-考核方式
--考核方式
-OJ系统说明
--关于OJ
--1-注册与登录
--2-界面与选课
--3-提交测试
-关于课程教材与讲义
--课程教材与讲义
-关于讨论区
--关于讨论区
-微信平台
--html
-PA晋级申请
--PA晋级
-(a)概述
--07A-1 纵览
--07A-5 接口
-(a)概述--作业
-(b1)BST:查找
-第七章 二叉搜索树--(b1)BST:查找
-(b2)BST:插入
-(b2)BST:插入--作业
-(b3)BST:删除
-第七章 二叉搜索树--(b3)BST:删除
-(c)平衡与等价
-(c)平衡与等价--作业
-(d1)AVL树:重平衡
-第七章 二叉搜索树--(d1)AVL树:重平衡
-(d2)AVL树:插入
-(d2)AVL树:插入--作业
-(d3)AVL树:删除
-(d3)AVL树:删除--作业
-(d4)AVL树:(3+4)-重构
-(d4)AVL树:(3+4)-重构--作业
-本章测验
--章节测验
-(a1)伸展树:逐层伸展
--习题
-(a2)伸展树:双层伸展
--习题
-(a3)伸展树:算法实现
--习题
-(b1)B-树:动机
--习题
-(b2)B-树:结构
--习题
-(b3)B-树:查找
--习题
-(b4)B-树: 插入
--习题
-(b5)B-树: 删除
--习题
-(xa1)红黑树:动机
--习题
-(xa2)红黑树:结构
--习题
-(xa3)红黑树:插入
--习题
-(xa4)红黑树:删除
-本章测验
--习题
-(b)散列:原理
--09B-3 数组
--09B-4 原理
--09B-5 散列
--09B-6 冲突
--习题
-(c)散列:散列函数
--习题
-(d1)散列:排解冲突(1)
--习题
-(d2)散列:排解冲突(2)
--习题
-(e)桶/计数排序
--习题
-本章测验
--本章测试
-(a1)需求与动机
--习题
-(a2)基本实现
--习题
-(b1)完全二叉堆:结构
--习题
-(b2)完全二叉堆:插入与上滤
--习题
-(b3)完全二叉堆:删除与下滤
--习题
-(b4)完全二叉堆:批量建堆
--习题
-(c)堆排序
--习题
-(xa1)左式堆:结构
--习题
-(xa2)左式堆:合并
--习题
-(xa3)左式堆:插入与删除
-本章测验
--本章测试
-(a)ADT
--习题
-(b1)串匹配
--习题
-(b2)蛮力匹配
--习题
-(c1)KMP算法:从记忆力到预知力
--习题
-(c2)KMP算法:查询表
--习题
-(c3)KMP算法:理解next[]表
--习题
-(c4)KMP算法:构造next[]表
--习题
-(c5)KMP算法:分摊分析
--习题
-(c6)KMP算法:再改进
-(d1)BM_BC算法:以终为始
-(d2)BM_BC算法:坏字符
-(d3)BM_BC算法:构造bc[]
-(d4)BM_BC算法:性能分析
-(e1)BM_GS算法:好后缀
-(e2)BM_GS算法:构造gs表
-(e3)BM_GS算法:综合性能
-(f1)Karp-Rabin算法:串即是数
-(f2)Karp-Rabin算法:散列
-本章测验
--本章测试
-(a1)快速排序:算法A
-- 12a1-5: 实例
--习题
-(a2)快速排序:性能分析
--习题
-(a4)快速排序:变种
-(b1)选取:众数
-(b3)选取:通用算法
--习题
-(c1) 希尔排序:Shell序列
--习题
-(c2)希尔排序:逆序对
-本章测验
--本章测试