当前课程知识点:数据结构(下) > 第十章 优先级队列 > (b1)完全二叉堆:结构 > 10b1-1: 完全二叉树
在上一节我们看到,就优先级队列的实现方式而言,
采用基本的向量结构并不足够,
而采用更高级的树形结构,
虽然完全可以高效率地实现优先级队列,
但却有杀鸡用牛刀之嫌。
那么,能否在这两种策略之间设计一种折衷的方案呢?
答案是肯定的,为此我们需要以向量为形,
以树形结构为神,形成二者之间的有机结合。
为此,我们需要借助完全二叉树。
所谓的"Complete Binary Tree",可以认为是AVL树的一个特例,
其中的平衡因子处处非负,
也就是说各节点的平衡因子或者为0,或者为+1,但绝对不可能是-1。
而且对树中的任何一个节点v而言,如果它的平衡因子为0,那么它的左子树必然是满树。
另一种可能,如果v的平衡因子为+1,那么它的右子树必定是满树。
由这些约定不难推知,就全局的拓扑连接而言,
完全二叉树大致应该呈现为这样一种形式。
也就是说,如果忽略它的最底层,
那么其余节点应该组成一棵满树。
而最底层呢?也只不过是缺失了右侧的连续一段。
-选课之前
--写在选课之前
--宣传片
-考核方式
--考核方式
-OJ系统说明
--关于OJ
--1-注册与登录
--2-界面与选课
--3-提交测试
-关于课程教材与讲义
--课程教材与讲义
-关于讨论区
--关于讨论区
-微信平台
--html
-PA晋级申请
--PA晋级
-(a)概述
--07A-1 纵览
--07A-5 接口
-(a)概述--作业
-(b1)BST:查找
-第七章 二叉搜索树--(b1)BST:查找
-(b2)BST:插入
-(b2)BST:插入--作业
-(b3)BST:删除
-第七章 二叉搜索树--(b3)BST:删除
-(c)平衡与等价
-(c)平衡与等价--作业
-(d1)AVL树:重平衡
-第七章 二叉搜索树--(d1)AVL树:重平衡
-(d2)AVL树:插入
-(d2)AVL树:插入--作业
-(d3)AVL树:删除
-(d3)AVL树:删除--作业
-(d4)AVL树:(3+4)-重构
-(d4)AVL树:(3+4)-重构--作业
-本章测验
--章节测验
-(a1)伸展树:逐层伸展
--习题
-(a2)伸展树:双层伸展
--习题
-(a3)伸展树:算法实现
--习题
-(b1)B-树:动机
--习题
-(b2)B-树:结构
--习题
-(b3)B-树:查找
--习题
-(b4)B-树: 插入
--习题
-(b5)B-树: 删除
--习题
-(xa1)红黑树:动机
--习题
-(xa2)红黑树:结构
--习题
-(xa3)红黑树:插入
--习题
-(xa4)红黑树:删除
-本章测验
--习题
-(b)散列:原理
--09B-3 数组
--09B-4 原理
--09B-5 散列
--09B-6 冲突
--习题
-(c)散列:散列函数
--习题
-(d1)散列:排解冲突(1)
--习题
-(d2)散列:排解冲突(2)
--习题
-(e)桶/计数排序
--习题
-本章测验
--本章测试
-(a1)需求与动机
--习题
-(a2)基本实现
--习题
-(b1)完全二叉堆:结构
--习题
-(b2)完全二叉堆:插入与上滤
--习题
-(b3)完全二叉堆:删除与下滤
--习题
-(b4)完全二叉堆:批量建堆
--习题
-(c)堆排序
--习题
-(xa1)左式堆:结构
--习题
-(xa2)左式堆:合并
--习题
-(xa3)左式堆:插入与删除
-本章测验
--本章测试
-(a)ADT
--习题
-(b1)串匹配
--习题
-(b2)蛮力匹配
--习题
-(c1)KMP算法:从记忆力到预知力
--习题
-(c2)KMP算法:查询表
--习题
-(c3)KMP算法:理解next[]表
--习题
-(c4)KMP算法:构造next[]表
--习题
-(c5)KMP算法:分摊分析
--习题
-(c6)KMP算法:再改进
-(d1)BM_BC算法:以终为始
-(d2)BM_BC算法:坏字符
-(d3)BM_BC算法:构造bc[]
-(d4)BM_BC算法:性能分析
-(e1)BM_GS算法:好后缀
-(e2)BM_GS算法:构造gs表
-(e3)BM_GS算法:综合性能
-(f1)Karp-Rabin算法:串即是数
-(f2)Karp-Rabin算法:散列
-本章测验
--本章测试
-(a1)快速排序:算法A
-- 12a1-5: 实例
--习题
-(a2)快速排序:性能分析
--习题
-(a4)快速排序:变种
-(b1)选取:众数
-(b3)选取:通用算法
--习题
-(c1) 希尔排序:Shell序列
--习题
-(c2)希尔排序:逆序对
-本章测验
--本章测试