当前课程知识点:数据结构(下) > 第十一章 串(下) > (d1)BM_BC算法:以终为始 > 11d1-1: 不对称性
上一节所介绍的KMP算法
计算时间在最坏情况下也可以保证不超过线性
这的确是一个好消息
然而 倘若我们因此就停下继续优化的脚步
那就大错特错了
实际上 串匹配问题与一般的搜索问题的确有着本质的区别
在我们此前所讨论的所有搜索算法中
每次比对 都是一种一对一的模式
也就是一个目标 与另一个候选者
判定二者是否相等
的确只需常数的时间
而现在 虽然基本的数据对象是单个的字符
而所谓的串匹配
则是相对于由若干个字符在局部组成的一个片段而言的
也就是说 是由多个字符对多个字符
二者匹配 当且仅当每一对字符彼此相等
然而需要特别注意的是
反过来 一旦发现有一对字符不等
我们就立即可以判断串失配
由此可见 从计算成本的角度来看
判定一对串是否相等
与判定它们是否不等
并不是完全一样的
我们接下来将要介绍的BM算法
就充分地利用了这一性质
从而使得串匹配的效率得以进一步地提高
实际上 这一算法同时采用了两种策略
在接下来的这一节
我们首先来讨论所谓的坏字符策略
-选课之前
--写在选课之前
--宣传片
-考核方式
--考核方式
-OJ系统说明
--关于OJ
--1-注册与登录
--2-界面与选课
--3-提交测试
-关于课程教材与讲义
--课程教材与讲义
-关于讨论区
--关于讨论区
-微信平台
--html
-PA晋级申请
--PA晋级
-(a)概述
--07A-1 纵览
--07A-5 接口
-(a)概述--作业
-(b1)BST:查找
-第七章 二叉搜索树--(b1)BST:查找
-(b2)BST:插入
-(b2)BST:插入--作业
-(b3)BST:删除
-第七章 二叉搜索树--(b3)BST:删除
-(c)平衡与等价
-(c)平衡与等价--作业
-(d1)AVL树:重平衡
-第七章 二叉搜索树--(d1)AVL树:重平衡
-(d2)AVL树:插入
-(d2)AVL树:插入--作业
-(d3)AVL树:删除
-(d3)AVL树:删除--作业
-(d4)AVL树:(3+4)-重构
-(d4)AVL树:(3+4)-重构--作业
-本章测验
--章节测验
-(a1)伸展树:逐层伸展
--习题
-(a2)伸展树:双层伸展
--习题
-(a3)伸展树:算法实现
--习题
-(b1)B-树:动机
--习题
-(b2)B-树:结构
--习题
-(b3)B-树:查找
--习题
-(b4)B-树: 插入
--习题
-(b5)B-树: 删除
--习题
-(xa1)红黑树:动机
--习题
-(xa2)红黑树:结构
--习题
-(xa3)红黑树:插入
--习题
-(xa4)红黑树:删除
-本章测验
--习题
-(b)散列:原理
--09B-3 数组
--09B-4 原理
--09B-5 散列
--09B-6 冲突
--习题
-(c)散列:散列函数
--习题
-(d1)散列:排解冲突(1)
--习题
-(d2)散列:排解冲突(2)
--习题
-(e)桶/计数排序
--习题
-本章测验
--本章测试
-(a1)需求与动机
--习题
-(a2)基本实现
--习题
-(b1)完全二叉堆:结构
--习题
-(b2)完全二叉堆:插入与上滤
--习题
-(b3)完全二叉堆:删除与下滤
--习题
-(b4)完全二叉堆:批量建堆
--习题
-(c)堆排序
--习题
-(xa1)左式堆:结构
--习题
-(xa2)左式堆:合并
--习题
-(xa3)左式堆:插入与删除
-本章测验
--本章测试
-(a)ADT
--习题
-(b1)串匹配
--习题
-(b2)蛮力匹配
--习题
-(c1)KMP算法:从记忆力到预知力
--习题
-(c2)KMP算法:查询表
--习题
-(c3)KMP算法:理解next[]表
--习题
-(c4)KMP算法:构造next[]表
--习题
-(c5)KMP算法:分摊分析
--习题
-(c6)KMP算法:再改进
-(d1)BM_BC算法:以终为始
-(d2)BM_BC算法:坏字符
-(d3)BM_BC算法:构造bc[]
-(d4)BM_BC算法:性能分析
-(e1)BM_GS算法:好后缀
-(e2)BM_GS算法:构造gs表
-(e3)BM_GS算法:综合性能
-(f1)Karp-Rabin算法:串即是数
-(f2)Karp-Rabin算法:散列
-本章测验
--本章测试
-(a1)快速排序:算法A
-- 12a1-5: 实例
--习题
-(a2)快速排序:性能分析
--习题
-(a4)快速排序:变种
-(b1)选取:众数
-(b3)选取:通用算法
--习题
-(c1) 希尔排序:Shell序列
--习题
-(c2)希尔排序:逆序对
-本章测验
--本章测试