当前课程知识点:数据结构(下) >  第八章 高级搜索树(上) >  (b3)B-树:查找 >  08B3-1 算法过程

返回《数据结构(下)》慕课在线视频课程列表

08B3-1 算法过程在线视频

08B3-1 算法过程

下一节:08B3-2 操作实例

返回《数据结构(下)》慕课在线视频列表

08B3-1 算法过程课程教案、知识点、字幕

在给出了B树的结构定义之后

接下来的一个话题自然就是

如何才能充分的利用它 并且有效的维护它

首先来看如何在B树中有效查找

假定这就是一棵B树 我们此前曾经讲过

B树中所存放的词条数量极多

以至于不便完全容纳在内存中 甚至根本不能由内存容纳

因此我们假定它相对的只能存放在速度更慢的外存之中

我们将会看到 所谓B树的查找

其诀窍在于只需要将必须的若干个节点载入内存

也就是说 通过这种策略可以尽可能的减少IO的次数

当然 对于一棵处于活跃状态的B树而言

不妨假设它的根节点已经常驻于内存

现在假设我们需要在这棵树中 查找特定的关键字key

于是我们首先会在常驻于内存的这个根节点中进行一次查找

你应该记得 每个节点中的关键码均已存成一个向量

因此我们这里实施的无非是一个顺序查找

如果能够在某个特定位置命中 我们的查找随即以成功告终

因此我们不妨再来看如果查找失败 又当如何处置

假设失败于一个特定的位置

我们知道在这个特定位置 应该预先已经记录了一个引用

这个引用将会指向B树中下一层的某一个节点

是的 因此我们继而可以沿着这个引用 找到下层的那个节点

并且将它载入到内存之中

也就是说 我们的查找深入一层

而代价呢 是做了一次读入性的IO操作

当然 既然我们已经搜索到这样一个节点

就可以断定 如果目标关键码的确存在于这棵树中

那么就必然存在于这个节点所对应的子树中

于是我们继续在这个新载入的节点中进行一次查找

请注意 借助向量结构 我们在此只需进行一次顺序的查找

同样 我们可能在某个位置命中 从而成功的返回

而反过来 如果在这个节点中的查找以失败告终呢

此时我们在新的这个节点中 也必然会停止于某个适当的位置

而且在这个位置 必然也预先记录了一个引用

使得我们可以顺利的找到在这棵B树中的下一层的某个节点

比如它

同样 如果目标关键码存在于整个B树中

那么至此可以断定 它必然存在与这个节点所对应的这棵子树中

因此为了进一步进行查找 我们也需要再做一次IO

将这个下层的节点载入内存

以下的过程与刚才几乎一样

具体来说 我们也需要在这个新载入的节点中做一次顺序查找

如果成功 完则罢了 否则的话 我们依然借助在失败位置的引用

进而找到再下一层的节点 乃至再下一层 乃至再再下一层

在最坏的情况下 这个过程有可能会反复持续到叶节点

也就是说 充其量我们需要抵达B树底层的一个叶节点

在这里 我们依然需要针对目标关键码 做一次顺序查找

同样 查找可能成功 也可能失败

而且即便失败 也不要紧

因为我们依然可以顺着失败方向的引用 找到下一层的节点

没错 下一层的节点尽管它并不是真实存在的节点

而只是一个虚拟的外部节点

至此 我们就可以报告整个查找以失败告终

当然 还有另外一种情况 也就是这个外部引用

实际上指向的是一棵存放于相对而言更低层次存储级别上的B树

这也是为什么将此类节点称作外部节点

因为借助它们 我们可以将存放于不同存储级别上的B树串接起来

构成更大的B树

当然在此我们不妨只将目光放在当前这一级存储上

而假设查找的确是以失败告终

纵观整个过程 可以看到所谓对B树的查找

无非是由一系列在内存中的顺序查找

以及一系列的IO操作

相间隔组成的一个操作序列

数据结构(下)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第七章 二叉搜索树

-(a)概述

--07A-1 纵览

--07A-2 循关键码访问

--07A-3 有序性

--07A-4 单调性

--07A-5 接口

-(a)概述--作业

-(b1)BST:查找

--07B1-1 概述

--07B1-2 查找:算法

--07B1-3 查找:理解

--07B1-4 查找:实现

--07B1-5 查找:语义

-第七章 二叉搜索树--(b1)BST:查找

-(b2)BST:插入

--07B2-1 插入:算法

--07B2-2 插入:实现

-(b2)BST:插入--作业

-(b3)BST:删除

--07B3-1 删除:框架

--07B3-2 删除:单分支

--07B3-3 删除:双分支

--07B3-4 删除:复杂度

-第七章 二叉搜索树--(b3)BST:删除

-(c)平衡与等价

--07C-1 极端退化

--07C-2 平均高度

--07C-3 理想+适度

--07C-4 歧义=等价

--07C-5 等价变换

-(c)平衡与等价--作业

-(d1)AVL树:重平衡

--07D1-1 AVL=BBST

--07D1-2 平衡因子

--07D1-3 适度平衡

--07D1-4 接口

--07D1-5 失衡+复衡

-第七章 二叉搜索树--(d1)AVL树:重平衡

-(d2)AVL树:插入

--07D2-1 插入:单旋

--07D2-2 插入:双旋

--07D2-3 插入:实现

-(d2)AVL树:插入--作业

-(d3)AVL树:删除

--07D3-1 删除:单旋

--07D3-2 删除:双旋

--07D3-3 删除:实现

-(d3)AVL树:删除--作业

-(d4)AVL树:(3+4)-重构

--07D4-1 ”3+4“重构

--07D4-2 ”3+4“实现

--07D4-3 rotateAt()

--07D4-4 综合评价

-(d4)AVL树:(3+4)-重构--作业

-本章测验

--章节测验

第八章 高级搜索树(上)

-(a1)伸展树:逐层伸展

--08A1-1 宽松平衡

--08A1-2 局部性

--08A1-3 自适应调整

--08A1-4 逐层伸展

--08A1-5 实例

--08A1-6 一步一步往上爬

--08A1-7 最坏情况

--习题

-(a2)伸展树:双层伸展

--08A2-1 双层伸展

--08A2-2 子孙异侧

--08A2-3 子孙同侧

--08A2-4 点睛之笔

--08A2-5 折叠效果

--08A2-6 分摊性能

--08A2-7 最后一步

--习题

-(a3)伸展树:算法实现

--08A3-1 功能接口

--08A3-2 伸展算法

--08A3-3 四种情况

--08A3-4 查找算法

--08A3-5 插入算法

--08A3-6 删除算法

--08A3-7 综合评价

--习题

-(b1)B-树:动机

--08B1-1 640KB

--08B1-2 越来越大的数据

--08B1-3 越来越小的内存

--08B1-4 一秒与一天

--08B1-5 分级I/O

--08B1-6 1B = 1KB

--习题

-(b2)B-树:结构

--08B2-1 观察体验

--08B2-2 多路平衡

--08B2-3 还是I/O

--08B2-4 深度统一

--08B2-5 阶次含义

--08b2-6: 紧凑表示

--08B2-7 BTNode

--08B2-8 BTree

--习题

-(b3)B-树:查找

--08B3-1 算法过程

--08B3-2 操作实例

--08B3-3 算法实现

--08B3-4 主次成本

--08B3-5 最大高度

--08B3-6 最小高度

--习题

第八章 高级搜索树(下)

-(b4)B-树: 插入

--08B4-1 算法框架

--08B4-2 分裂

--08B4-3 再分裂

--08B4-4 分裂到根

--08B4-5: 实例演示

--习题

-(b5)B-树: 删除

--08B5-1 算法框架

--08B5-2 旋转

--08B5-3 合并

--08B5-4 实例演示

--08B5-5 道法自然

--习题

-(xa1)红黑树:动机

--08XA1-1 观察体验

--08XA1-2 持久性

--08XA1-3 关联性

--08XA1-4 O(1)重构

--习题

-(xa2)红黑树:结构

--08XA2-1 定义规则

--08XA2-2 实例验证

--08XA2-3 提升变换

--08XA2-4 末端节点

--08XA2-5 红黒树,即是B-树

--08XA2-6 平衡性

--08xa2-7: 接口定义

--习题

-(xa3)红黑树:插入

--08XA3-1 以曲为直

--08XA3-2 双红缺陷

--08XA3-3 算法框架

--08XA3-4 RR-1

--08XA3-5 RR-2

--08XA3-6 归纳回味

--习题

-(xa4)红黑树:删除

--08XA4-1 以曲为直

--08XA4-2 算法框架

--08XA4-3 双黑缺陷

--08XA4-4 BB-1

--08XA4-5 反观回味

--08XA4-6 BB-2R

--08XA4-7 BB-2B

--08XA4-8 BB-3

--08xa4-9: 归纳体味

-本章测验

--习题

第九章 词典

-(b)散列:原理

--09B-1 从服务到电话

--09B-2 循值访问

--09B-3 数组

--09B-4 原理

--09B-5 散列

--09B-6 冲突

--习题

-(c)散列:散列函数

--09C-1 冲突难免

--09C-2 何谓优劣

--09C-3 整除留余

--09C-4 以蝉为师

--09C-5 M+A+D

--09C-6 平方取中

--09C-7 折叠汇总

--09C-8 伪随机数

--09C-9 多项式

--09C-A Vorldmort

--09C-B DSA@THU

--习题

-(d1)散列:排解冲突(1)

--09D1-1 一山二虎

--09D1-2 泾渭分明

--09D1-3 开放定址

--09D1-4 线性试探

--09D1-5 懒惰删除

--习题

-(d2)散列:排解冲突(2)

--09D2-1 平方试探

--09D2-2 一利一弊

--09D2-3 至多半载

--09D2-4 M + Lemda

--09D2-5 双蜓点水

--09D2-6 4k + 3

--09D2-7 双平方定理

--09D2-8 泾渭分明

--习题

-(e)桶/计数排序

--09E-1 大数据 + 小范围

--09E-2 桶排序

--09E-3 计数排序

--习题

-本章测验

--本章测试

第十章 优先级队列

-(a1)需求与动机

--10a1-1: 应用需求

--10a1-2: 计算模式

--10a1-3: 功能接口

--习题

-(a2)基本实现

--10a2-1: 向量

--10a2-2: 有序向量

--10a2-3: BBST

--习题

-(b1)完全二叉堆:结构

--10b1-1: 完全二叉树

--10b1-2: 结构性

--10b1-3: 形具神备

--10b1-4: 堆序性

--习题

-(b2)完全二叉堆:插入与上滤

--10b2-1: 上滤

--10b2-2: 实例

--10b2-3: 实现

--10b2-4: 效率

--习题

-(b3)完全二叉堆:删除与下滤

--10b3-1: 算法

--10b3-2: 实例

--10b3-3: 实现

--10b3-4: 效率

--习题

-(b4)完全二叉堆:批量建堆

--10b4-1 : 自上而下的上滤:算法

--10b4-2: 自上而下的上滤:效率

--10b4-3: 自下而上的下滤:算法

--10b4-4 : 自下而上的下滤:实例

--10B4-5: 自下而上的下滤:效率

--习题

-(c)堆排序

--10c-1: 算法

--10c-2: 就地

--10c-3: 实现

--10c-4: 实例

--习题

-(xa1)左式堆:结构

--10xa-1: 第一印象

--10xa1-2: 堆之合并

--10xa1-3: 奇中求正

--10xa1-4: NPL

--10xa1-5: 左倾性

--10xa1-6: 左展右敛

--习题

-(xa2)左式堆:合并

--10xa2-1: LeftHeap模板类

--10xa2-2: 算法

--10xa2-3: 实现

--10xa2-4: 实例

--习题

-(xa3)左式堆:插入与删除

--10xa3-1: 插入即是合并

--10xa3-2: 删除亦是合并

-本章测验

--本章测试

第十一章 串(上)

-(a)ADT

--11a-1: 定义+特点

--11a-2: 术语

--11a-3: ADT

--习题

-(b1)串匹配

--11b1-1: 问题与需求

--11b1-2 算法测评

--习题

-(b2)蛮力匹配

--11b2-1: 构思

--11b2-2: 版本一

--11b2-3: 版本二

--11b2-4: 性能

--习题

-(c1)KMP算法:从记忆力到预知力

--11c1-1: 重复匹配的前缀

--11c1-2: 不变性

--11c1-3 : 记忆力

--11c1-4: 预知力

--习题

-(c2)KMP算法:查询表

--11c2-1: 制表备查

--11c2-2: 主算法

--11c2-3: 实例

--习题

-(c3)KMP算法:理解next[]表

--11c3-1: 快速移动

--11c3-2: 避免回溯

--11C3-3: 通配哨兵

--习题

-(c4)KMP算法:构造next[]表

--11c4-1: 递推

--11c4-2: 算法

--11c4-3: 实现

--习题

-(c5)KMP算法:分摊分析

--11c5-1: 失之粗糙

--11c5-2: 精准估计

--习题

-(c6)KMP算法:再改进

--11c6-1: 美中不足

--11c6-2: 以卵击石

--11c6-3: 前车之覆

--11c6-4 后车之鉴

--11c6-5 : 可视对比

第十一章 串(下)

-(d1)BM_BC算法:以终为始

--11d1-1: 不对称性

--11d1-2: 善待教训

--11d1-3: 前轻后重

--11d1-4: 以终为始

-(d2)BM_BC算法:坏字符

--11d2-1: 坏字符

--11d2-2: 特殊情况

-(d3)BM_BC算法:构造bc[]

--11d3: 画家策略

-(d4)BM_BC算法:性能分析

--11d4-1: 最好情况

--11d4-2: 最坏情况

-(e1)BM_GS算法:好后缀

--11e1-1: 兼顾经验

--11e1-2: 好后缀策略

--11e1-3: 实例体验

-(e2)BM_GS算法:构造gs表

--11e2: 构造gs表

-(e3)BM_GS算法:综合性能

--11e3-1: BM之性能

--11e3-2: 各算法纵览

-(f1)Karp-Rabin算法:串即是数

--11f1-1: 化串为数

--11f1-2: 凡物皆数

--11f1-3: 串亦是数

-(f2)Karp-Rabin算法:散列

--11f2-1: 数位溢出

--11f2-2: 散列压缩

--11f2-3: 应对冲突

--11f2-4: 指纹更新

-本章测验

--本章测试

第十二章 排序

-(a1)快速排序:算法A

--12a1-1: 分而治之

--12a1-2: 轴点

--12a1-3: 构造轴点

--12a1-4: 单调性 + 不变性

-- 12a1-5: 实例

--习题

-(a2)快速排序:性能分析

--12a2-1: 不稳定 + 就地

--12a2-2: 最好情况 + 最坏情况

--12a2-3: 平均情况

--习题

-(a4)快速排序:变种

--12a4-1: 不变性

--12a4-2: 单调性

--12a4-3: 实现

--12a4-4: 实例

--12a4-5: 时间 + 空间 + 稳定性

-(b1)选取:众数

--12b1-1: 选取 + 中位数

--12b1-2: 从中位数到众数

--12b1-3: 从频繁数到众数

--12b1-4: 减而治之

--12b1-5: 算法实现

-(b3)选取:通用算法

--12b3-1: 尝试

--12b3-2: quickSelect

--12b3-3: linearSelect:算法

--12b3-4: linearSelect:性能分析A

--12b3-5 : linearSelect:性能分析B

--12b3-6 : linearSelect:性能分析C

--习题

-(c1) 希尔排序:Shell序列

--12c1-1: 策略

--12c1-2: 实例

--12c1-3: 循秩访问

--12c1-4: 插入排序

--12c1-5: Shell序列

--习题

-(c2)希尔排序:逆序对

--12c2-1: 邮资问题

--12c2-2: 定理K

--12c2-3: 逆序对

-本章测验

--本章测试

08B3-1 算法过程笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。