当前课程知识点:数据结构(下) >  第七章 二叉搜索树 >  (d4)AVL树:(3+4)-重构 >  07D4-1 ”3+4“重构

返回《数据结构(下)》慕课在线视频课程列表

07D4-1 ”3+4“重构在线视频

07D4-1 ”3+4“重构

下一节:07D4-2 ”3+4“实现

返回《数据结构(下)》慕课在线视频列表

07D4-1 ”3+4“重构课程教案、知识点、字幕

实际上 以上针对AVL树

插入操作和删除操作

所介绍的单旋式和双旋式调整技巧

无非是为了帮助你形成对算法的理解

而在真正的实现时

我们大可不必机械地如此理解

这样一个过程可以比喻为玩魔方

是的 你需要在规则的允许下

通过巧妙的旋转组合

使之转入某种特定的状态

比如六面各自同色

那么你是否去过魔方的组装车间?

你会发现那里的工人

可不是按照你这样的规则

在那儿进行这样的旋转

实际上 它们无非是将魔方的

一个又一个组件直接地拼接为一个魔方

工人们之所以这么做

是因为它们最大也是唯一的目标是

尽快地以最高的效率完成魔方的组装

我们这里呢 也不妨借助这一策略

因为对于AVL树的重平衡化而言

我们最终在乎的并不是所谓的技巧

而是在于这个过程的效率

我们来看一下

如何将魔方组装工人的那种策略

用到我们这个问题上

具体来说 我们依然假设g

就是当前最低的那个失衡祖先

并且同样地沿着那个最长的分支

去考察g p v这祖孙三代

以下我们并不急于对它们进行旋转

而是首先做重命名

也就是说

按照它们在中序遍历序列中的次序

自小到大

重新命名为a b以及c

对照我们此前所讲的各种情况

无论是Zig-zag zag-zig

Zig-zig或者是zag-zag

你会发现在它们以下

无非是最多4棵子树

那么我们也需要对这4棵子树做重命名

而且命名的规则

同样是参照中序遍历的次序

也就是T0至最小的那棵树

T1是次小的 T2是较大的 T3是最大

此时 如果我们依然按照中序遍历的次序

将这两个序列混合起来

就可以得到一个长度为7的序列

在这个序列中 三个节点a b c

必然是镶嵌于这4棵子树之间

实际上 无论是哪种具体的情况

经过这样的重命名之后

按照中序遍历的次序

必然是从T0到a 再从a到T1

再从T1到b 然后从b到T2

再从T2到c 最终由c到T3

你应该不会觉得奇怪

因为这恰恰就是BST所谓的单调性

在这样一棵局部子树的具体体现

在调整之前 即便这棵子树是失衡的

它也依然是一棵BST

所以这个单调性应该自然满足

而在调整之后 尽管它已经恢复了平衡

但是这个单调性也依然需要保持

因此 我们可以统一地将这三个顶点abc

以及这4棵子树

按照这样一个拓扑关系直接地拼接起来

具体来说 以a和c

分别作为b的左和右孩子

而T0和T1将作为a的左和右子树

T2和T3分别作为c的左和右子树

这样一种拼接是针对于三个节点

以及下属4棵子树而言的

所以也称作3+4重构

在此 你不妨稍作暂停

并对照此前所介绍的各种情况

以及相应的调整算法

应该会发现 无论是插入还是删除

无论是单旋 还是双旋

最终的效果都应该是这样一种形式

这也犹如无论魔方的最初状态如何

也无论你所设计的旋转方案具体如何

最终必然应该达到

你心目中早已设计好的一个结局

对于魔方而言 一般都是六面各自同色

而对于我们的BBST而言

则是在此局部地重新平衡

按照这样的一个思路

我们可以更为概括

而且更为深入地来理解并且记忆

以上各种情况的处理手法

而更好的消息是 按照这样一种理解

我们也可以更加简明 更加高效

而且更加安全鲁棒地来实现相应的重构算法

数据结构(下)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第七章 二叉搜索树

-(a)概述

--07A-1 纵览

--07A-2 循关键码访问

--07A-3 有序性

--07A-4 单调性

--07A-5 接口

-(a)概述--作业

-(b1)BST:查找

--07B1-1 概述

--07B1-2 查找:算法

--07B1-3 查找:理解

--07B1-4 查找:实现

--07B1-5 查找:语义

-第七章 二叉搜索树--(b1)BST:查找

-(b2)BST:插入

--07B2-1 插入:算法

--07B2-2 插入:实现

-(b2)BST:插入--作业

-(b3)BST:删除

--07B3-1 删除:框架

--07B3-2 删除:单分支

--07B3-3 删除:双分支

--07B3-4 删除:复杂度

-第七章 二叉搜索树--(b3)BST:删除

-(c)平衡与等价

--07C-1 极端退化

--07C-2 平均高度

--07C-3 理想+适度

--07C-4 歧义=等价

--07C-5 等价变换

-(c)平衡与等价--作业

-(d1)AVL树:重平衡

--07D1-1 AVL=BBST

--07D1-2 平衡因子

--07D1-3 适度平衡

--07D1-4 接口

--07D1-5 失衡+复衡

-第七章 二叉搜索树--(d1)AVL树:重平衡

-(d2)AVL树:插入

--07D2-1 插入:单旋

--07D2-2 插入:双旋

--07D2-3 插入:实现

-(d2)AVL树:插入--作业

-(d3)AVL树:删除

--07D3-1 删除:单旋

--07D3-2 删除:双旋

--07D3-3 删除:实现

-(d3)AVL树:删除--作业

-(d4)AVL树:(3+4)-重构

--07D4-1 ”3+4“重构

--07D4-2 ”3+4“实现

--07D4-3 rotateAt()

--07D4-4 综合评价

-(d4)AVL树:(3+4)-重构--作业

-本章测验

--章节测验

第八章 高级搜索树(上)

-(a1)伸展树:逐层伸展

--08A1-1 宽松平衡

--08A1-2 局部性

--08A1-3 自适应调整

--08A1-4 逐层伸展

--08A1-5 实例

--08A1-6 一步一步往上爬

--08A1-7 最坏情况

--习题

-(a2)伸展树:双层伸展

--08A2-1 双层伸展

--08A2-2 子孙异侧

--08A2-3 子孙同侧

--08A2-4 点睛之笔

--08A2-5 折叠效果

--08A2-6 分摊性能

--08A2-7 最后一步

--习题

-(a3)伸展树:算法实现

--08A3-1 功能接口

--08A3-2 伸展算法

--08A3-3 四种情况

--08A3-4 查找算法

--08A3-5 插入算法

--08A3-6 删除算法

--08A3-7 综合评价

--习题

-(b1)B-树:动机

--08B1-1 640KB

--08B1-2 越来越大的数据

--08B1-3 越来越小的内存

--08B1-4 一秒与一天

--08B1-5 分级I/O

--08B1-6 1B = 1KB

--习题

-(b2)B-树:结构

--08B2-1 观察体验

--08B2-2 多路平衡

--08B2-3 还是I/O

--08B2-4 深度统一

--08B2-5 阶次含义

--08b2-6: 紧凑表示

--08B2-7 BTNode

--08B2-8 BTree

--习题

-(b3)B-树:查找

--08B3-1 算法过程

--08B3-2 操作实例

--08B3-3 算法实现

--08B3-4 主次成本

--08B3-5 最大高度

--08B3-6 最小高度

--习题

第八章 高级搜索树(下)

-(b4)B-树: 插入

--08B4-1 算法框架

--08B4-2 分裂

--08B4-3 再分裂

--08B4-4 分裂到根

--08B4-5: 实例演示

--习题

-(b5)B-树: 删除

--08B5-1 算法框架

--08B5-2 旋转

--08B5-3 合并

--08B5-4 实例演示

--08B5-5 道法自然

--习题

-(xa1)红黑树:动机

--08XA1-1 观察体验

--08XA1-2 持久性

--08XA1-3 关联性

--08XA1-4 O(1)重构

--习题

-(xa2)红黑树:结构

--08XA2-1 定义规则

--08XA2-2 实例验证

--08XA2-3 提升变换

--08XA2-4 末端节点

--08XA2-5 红黒树,即是B-树

--08XA2-6 平衡性

--08xa2-7: 接口定义

--习题

-(xa3)红黑树:插入

--08XA3-1 以曲为直

--08XA3-2 双红缺陷

--08XA3-3 算法框架

--08XA3-4 RR-1

--08XA3-5 RR-2

--08XA3-6 归纳回味

--习题

-(xa4)红黑树:删除

--08XA4-1 以曲为直

--08XA4-2 算法框架

--08XA4-3 双黑缺陷

--08XA4-4 BB-1

--08XA4-5 反观回味

--08XA4-6 BB-2R

--08XA4-7 BB-2B

--08XA4-8 BB-3

--08xa4-9: 归纳体味

-本章测验

--习题

第九章 词典

-(b)散列:原理

--09B-1 从服务到电话

--09B-2 循值访问

--09B-3 数组

--09B-4 原理

--09B-5 散列

--09B-6 冲突

--习题

-(c)散列:散列函数

--09C-1 冲突难免

--09C-2 何谓优劣

--09C-3 整除留余

--09C-4 以蝉为师

--09C-5 M+A+D

--09C-6 平方取中

--09C-7 折叠汇总

--09C-8 伪随机数

--09C-9 多项式

--09C-A Vorldmort

--09C-B DSA@THU

--习题

-(d1)散列:排解冲突(1)

--09D1-1 一山二虎

--09D1-2 泾渭分明

--09D1-3 开放定址

--09D1-4 线性试探

--09D1-5 懒惰删除

--习题

-(d2)散列:排解冲突(2)

--09D2-1 平方试探

--09D2-2 一利一弊

--09D2-3 至多半载

--09D2-4 M + Lemda

--09D2-5 双蜓点水

--09D2-6 4k + 3

--09D2-7 双平方定理

--09D2-8 泾渭分明

--习题

-(e)桶/计数排序

--09E-1 大数据 + 小范围

--09E-2 桶排序

--09E-3 计数排序

--习题

-本章测验

--本章测试

第十章 优先级队列

-(a1)需求与动机

--10a1-1: 应用需求

--10a1-2: 计算模式

--10a1-3: 功能接口

--习题

-(a2)基本实现

--10a2-1: 向量

--10a2-2: 有序向量

--10a2-3: BBST

--习题

-(b1)完全二叉堆:结构

--10b1-1: 完全二叉树

--10b1-2: 结构性

--10b1-3: 形具神备

--10b1-4: 堆序性

--习题

-(b2)完全二叉堆:插入与上滤

--10b2-1: 上滤

--10b2-2: 实例

--10b2-3: 实现

--10b2-4: 效率

--习题

-(b3)完全二叉堆:删除与下滤

--10b3-1: 算法

--10b3-2: 实例

--10b3-3: 实现

--10b3-4: 效率

--习题

-(b4)完全二叉堆:批量建堆

--10b4-1 : 自上而下的上滤:算法

--10b4-2: 自上而下的上滤:效率

--10b4-3: 自下而上的下滤:算法

--10b4-4 : 自下而上的下滤:实例

--10B4-5: 自下而上的下滤:效率

--习题

-(c)堆排序

--10c-1: 算法

--10c-2: 就地

--10c-3: 实现

--10c-4: 实例

--习题

-(xa1)左式堆:结构

--10xa-1: 第一印象

--10xa1-2: 堆之合并

--10xa1-3: 奇中求正

--10xa1-4: NPL

--10xa1-5: 左倾性

--10xa1-6: 左展右敛

--习题

-(xa2)左式堆:合并

--10xa2-1: LeftHeap模板类

--10xa2-2: 算法

--10xa2-3: 实现

--10xa2-4: 实例

--习题

-(xa3)左式堆:插入与删除

--10xa3-1: 插入即是合并

--10xa3-2: 删除亦是合并

-本章测验

--本章测试

第十一章 串(上)

-(a)ADT

--11a-1: 定义+特点

--11a-2: 术语

--11a-3: ADT

--习题

-(b1)串匹配

--11b1-1: 问题与需求

--11b1-2 算法测评

--习题

-(b2)蛮力匹配

--11b2-1: 构思

--11b2-2: 版本一

--11b2-3: 版本二

--11b2-4: 性能

--习题

-(c1)KMP算法:从记忆力到预知力

--11c1-1: 重复匹配的前缀

--11c1-2: 不变性

--11c1-3 : 记忆力

--11c1-4: 预知力

--习题

-(c2)KMP算法:查询表

--11c2-1: 制表备查

--11c2-2: 主算法

--11c2-3: 实例

--习题

-(c3)KMP算法:理解next[]表

--11c3-1: 快速移动

--11c3-2: 避免回溯

--11C3-3: 通配哨兵

--习题

-(c4)KMP算法:构造next[]表

--11c4-1: 递推

--11c4-2: 算法

--11c4-3: 实现

--习题

-(c5)KMP算法:分摊分析

--11c5-1: 失之粗糙

--11c5-2: 精准估计

--习题

-(c6)KMP算法:再改进

--11c6-1: 美中不足

--11c6-2: 以卵击石

--11c6-3: 前车之覆

--11c6-4 后车之鉴

--11c6-5 : 可视对比

第十一章 串(下)

-(d1)BM_BC算法:以终为始

--11d1-1: 不对称性

--11d1-2: 善待教训

--11d1-3: 前轻后重

--11d1-4: 以终为始

-(d2)BM_BC算法:坏字符

--11d2-1: 坏字符

--11d2-2: 特殊情况

-(d3)BM_BC算法:构造bc[]

--11d3: 画家策略

-(d4)BM_BC算法:性能分析

--11d4-1: 最好情况

--11d4-2: 最坏情况

-(e1)BM_GS算法:好后缀

--11e1-1: 兼顾经验

--11e1-2: 好后缀策略

--11e1-3: 实例体验

-(e2)BM_GS算法:构造gs表

--11e2: 构造gs表

-(e3)BM_GS算法:综合性能

--11e3-1: BM之性能

--11e3-2: 各算法纵览

-(f1)Karp-Rabin算法:串即是数

--11f1-1: 化串为数

--11f1-2: 凡物皆数

--11f1-3: 串亦是数

-(f2)Karp-Rabin算法:散列

--11f2-1: 数位溢出

--11f2-2: 散列压缩

--11f2-3: 应对冲突

--11f2-4: 指纹更新

-本章测验

--本章测试

第十二章 排序

-(a1)快速排序:算法A

--12a1-1: 分而治之

--12a1-2: 轴点

--12a1-3: 构造轴点

--12a1-4: 单调性 + 不变性

-- 12a1-5: 实例

--习题

-(a2)快速排序:性能分析

--12a2-1: 不稳定 + 就地

--12a2-2: 最好情况 + 最坏情况

--12a2-3: 平均情况

--习题

-(a4)快速排序:变种

--12a4-1: 不变性

--12a4-2: 单调性

--12a4-3: 实现

--12a4-4: 实例

--12a4-5: 时间 + 空间 + 稳定性

-(b1)选取:众数

--12b1-1: 选取 + 中位数

--12b1-2: 从中位数到众数

--12b1-3: 从频繁数到众数

--12b1-4: 减而治之

--12b1-5: 算法实现

-(b3)选取:通用算法

--12b3-1: 尝试

--12b3-2: quickSelect

--12b3-3: linearSelect:算法

--12b3-4: linearSelect:性能分析A

--12b3-5 : linearSelect:性能分析B

--12b3-6 : linearSelect:性能分析C

--习题

-(c1) 希尔排序:Shell序列

--12c1-1: 策略

--12c1-2: 实例

--12c1-3: 循秩访问

--12c1-4: 插入排序

--12c1-5: Shell序列

--习题

-(c2)希尔排序:逆序对

--12c2-1: 邮资问题

--12c2-2: 定理K

--12c2-3: 逆序对

-本章测验

--本章测试

07D4-1 ”3+4“重构笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。