当前课程知识点:数据结构(下) >  第十二章 排序 >  (b3)选取:通用算法 >  12b3-3: linearSelect:算法

返回《数据结构(下)》慕课在线视频课程列表

12b3-3: linearSelect:算法在线视频

12b3-3: linearSelect:算法

下一节:12b3-4: linearSelect:性能分析A

返回《数据结构(下)》慕课在线视频列表

12b3-3: linearSelect:算法课程教案、知识点、字幕

我们接下来将要介绍的这个选取算法

就是在刚才quickselect算法的基础上

进行的改进

因为这个算法即便在最还情况下

也只需渐进的线性时间

因此我们也称之为linearselect

这个算法需要用到一个常数Q

它的数值不大

我们稍候就会具体来确定它的取值

这个linearselect的算法

将以递归形式给出

因此我们首先需要准备好递归基

也就是当问题的规模已经足够小时

我们就不妨调用任何一种

平凡的选取算法

接下来我们需要将整个数据集

均匀的切分为若干组

每一组依然是一个随机的序列

它们的规模都统一取作

刚才引入的那个常数Q

如此我们将得到N除以Q个子序列

接下来对于每一个这样的子序列

我们都分别对它们进行排序

没错 排序

而且在这里

你可以不必过于在意排序的效率

比如可以直接采用插入排序算法

而在经过如此排序之后

我们也就可以直接得到

每一个子序列所对应的中位数

既然总共有N除Q个子序列

所以这里中位数也总共应该有

N除以Q个

接下来我们再从所有这些中位数中

去找到它们的中位数

也就是中位数的中位数

median of the medians

具体如何来找到呢

通过递归

也就是调用linearselect的算法本身

我们将这个中位数的中位数

记作大写的M

接下来我们就需要

以这个中位数的中位数为基准

对整个数据集中的所有元素

进行分类

具体来说所有小于M的元素

都归入L中

所有大于M的元素都归入到G中

而所有与之相等的元素

都归入到集合E中

此时的状态以及可能的情况

可以由这组图来表示

既然这三个集合之间

有明确的大小关系

所以无论如何

从大到小

它们必然是L在最左侧E居中

以及G在最右侧

当然它们的规模大小可能有所不同

不要忘了我们的查找目标

是在全局秩为K的那个元素

所以接下来我们可以沿用

quickselect算法的思路

根据不同的情况

相应的对问题的规模进行裁减

从而实现有效的减而治之

具体来说根据目标元素

具体应该落在L E或者G中

无非三种情况

如果L足够长

以至于K应该落在其中

那么不难看出E以及G都可以被减除掉

因此在这种情况下

我们接下来

只需将查找的范围缩减到子集L

然后递归的进行查找

对称的如果G足够大

则意味着E以及L都可以被减除掉

因此在这种情况下

我们同样可以将搜索的范围

缩小到子集G

并同样通过递归来完成后续的查找

需要注意的是

如果子集G是以序列形式给出的

那么在这个序列中

原先秩为K的那个目标元素

在G中所对应的秩将有所减少

在这里我们不要忘了对它及时的更新

那么最后一种情况

无非就是目标元素落在子集E中

不要忘了 E中的元素

都等于全局的那个中值

这意味着什么呢

没错

意味着全局的这个中值

恰好就是我们的查找对象

也就是说我们在这个位置已然命中

因此可以直接将其返回

这也是算法的最终出口

这个linearselect算法

尽管略显复杂

但是我们不难验证

它在功能上的正确性

因此我们接下来

需要回答的关键问题就是

它的时间复杂度有多高

是否如它的名字所暗示的那样

即便在最坏的情况下

也能保证不超过渐进的线性

数据结构(下)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第七章 二叉搜索树

-(a)概述

--07A-1 纵览

--07A-2 循关键码访问

--07A-3 有序性

--07A-4 单调性

--07A-5 接口

-(a)概述--作业

-(b1)BST:查找

--07B1-1 概述

--07B1-2 查找:算法

--07B1-3 查找:理解

--07B1-4 查找:实现

--07B1-5 查找:语义

-第七章 二叉搜索树--(b1)BST:查找

-(b2)BST:插入

--07B2-1 插入:算法

--07B2-2 插入:实现

-(b2)BST:插入--作业

-(b3)BST:删除

--07B3-1 删除:框架

--07B3-2 删除:单分支

--07B3-3 删除:双分支

--07B3-4 删除:复杂度

-第七章 二叉搜索树--(b3)BST:删除

-(c)平衡与等价

--07C-1 极端退化

--07C-2 平均高度

--07C-3 理想+适度

--07C-4 歧义=等价

--07C-5 等价变换

-(c)平衡与等价--作业

-(d1)AVL树:重平衡

--07D1-1 AVL=BBST

--07D1-2 平衡因子

--07D1-3 适度平衡

--07D1-4 接口

--07D1-5 失衡+复衡

-第七章 二叉搜索树--(d1)AVL树:重平衡

-(d2)AVL树:插入

--07D2-1 插入:单旋

--07D2-2 插入:双旋

--07D2-3 插入:实现

-(d2)AVL树:插入--作业

-(d3)AVL树:删除

--07D3-1 删除:单旋

--07D3-2 删除:双旋

--07D3-3 删除:实现

-(d3)AVL树:删除--作业

-(d4)AVL树:(3+4)-重构

--07D4-1 ”3+4“重构

--07D4-2 ”3+4“实现

--07D4-3 rotateAt()

--07D4-4 综合评价

-(d4)AVL树:(3+4)-重构--作业

-本章测验

--章节测验

第八章 高级搜索树(上)

-(a1)伸展树:逐层伸展

--08A1-1 宽松平衡

--08A1-2 局部性

--08A1-3 自适应调整

--08A1-4 逐层伸展

--08A1-5 实例

--08A1-6 一步一步往上爬

--08A1-7 最坏情况

--习题

-(a2)伸展树:双层伸展

--08A2-1 双层伸展

--08A2-2 子孙异侧

--08A2-3 子孙同侧

--08A2-4 点睛之笔

--08A2-5 折叠效果

--08A2-6 分摊性能

--08A2-7 最后一步

--习题

-(a3)伸展树:算法实现

--08A3-1 功能接口

--08A3-2 伸展算法

--08A3-3 四种情况

--08A3-4 查找算法

--08A3-5 插入算法

--08A3-6 删除算法

--08A3-7 综合评价

--习题

-(b1)B-树:动机

--08B1-1 640KB

--08B1-2 越来越大的数据

--08B1-3 越来越小的内存

--08B1-4 一秒与一天

--08B1-5 分级I/O

--08B1-6 1B = 1KB

--习题

-(b2)B-树:结构

--08B2-1 观察体验

--08B2-2 多路平衡

--08B2-3 还是I/O

--08B2-4 深度统一

--08B2-5 阶次含义

--08b2-6: 紧凑表示

--08B2-7 BTNode

--08B2-8 BTree

--习题

-(b3)B-树:查找

--08B3-1 算法过程

--08B3-2 操作实例

--08B3-3 算法实现

--08B3-4 主次成本

--08B3-5 最大高度

--08B3-6 最小高度

--习题

第八章 高级搜索树(下)

-(b4)B-树: 插入

--08B4-1 算法框架

--08B4-2 分裂

--08B4-3 再分裂

--08B4-4 分裂到根

--08B4-5: 实例演示

--习题

-(b5)B-树: 删除

--08B5-1 算法框架

--08B5-2 旋转

--08B5-3 合并

--08B5-4 实例演示

--08B5-5 道法自然

--习题

-(xa1)红黑树:动机

--08XA1-1 观察体验

--08XA1-2 持久性

--08XA1-3 关联性

--08XA1-4 O(1)重构

--习题

-(xa2)红黑树:结构

--08XA2-1 定义规则

--08XA2-2 实例验证

--08XA2-3 提升变换

--08XA2-4 末端节点

--08XA2-5 红黒树,即是B-树

--08XA2-6 平衡性

--08xa2-7: 接口定义

--习题

-(xa3)红黑树:插入

--08XA3-1 以曲为直

--08XA3-2 双红缺陷

--08XA3-3 算法框架

--08XA3-4 RR-1

--08XA3-5 RR-2

--08XA3-6 归纳回味

--习题

-(xa4)红黑树:删除

--08XA4-1 以曲为直

--08XA4-2 算法框架

--08XA4-3 双黑缺陷

--08XA4-4 BB-1

--08XA4-5 反观回味

--08XA4-6 BB-2R

--08XA4-7 BB-2B

--08XA4-8 BB-3

--08xa4-9: 归纳体味

-本章测验

--习题

第九章 词典

-(b)散列:原理

--09B-1 从服务到电话

--09B-2 循值访问

--09B-3 数组

--09B-4 原理

--09B-5 散列

--09B-6 冲突

--习题

-(c)散列:散列函数

--09C-1 冲突难免

--09C-2 何谓优劣

--09C-3 整除留余

--09C-4 以蝉为师

--09C-5 M+A+D

--09C-6 平方取中

--09C-7 折叠汇总

--09C-8 伪随机数

--09C-9 多项式

--09C-A Vorldmort

--09C-B DSA@THU

--习题

-(d1)散列:排解冲突(1)

--09D1-1 一山二虎

--09D1-2 泾渭分明

--09D1-3 开放定址

--09D1-4 线性试探

--09D1-5 懒惰删除

--习题

-(d2)散列:排解冲突(2)

--09D2-1 平方试探

--09D2-2 一利一弊

--09D2-3 至多半载

--09D2-4 M + Lemda

--09D2-5 双蜓点水

--09D2-6 4k + 3

--09D2-7 双平方定理

--09D2-8 泾渭分明

--习题

-(e)桶/计数排序

--09E-1 大数据 + 小范围

--09E-2 桶排序

--09E-3 计数排序

--习题

-本章测验

--本章测试

第十章 优先级队列

-(a1)需求与动机

--10a1-1: 应用需求

--10a1-2: 计算模式

--10a1-3: 功能接口

--习题

-(a2)基本实现

--10a2-1: 向量

--10a2-2: 有序向量

--10a2-3: BBST

--习题

-(b1)完全二叉堆:结构

--10b1-1: 完全二叉树

--10b1-2: 结构性

--10b1-3: 形具神备

--10b1-4: 堆序性

--习题

-(b2)完全二叉堆:插入与上滤

--10b2-1: 上滤

--10b2-2: 实例

--10b2-3: 实现

--10b2-4: 效率

--习题

-(b3)完全二叉堆:删除与下滤

--10b3-1: 算法

--10b3-2: 实例

--10b3-3: 实现

--10b3-4: 效率

--习题

-(b4)完全二叉堆:批量建堆

--10b4-1 : 自上而下的上滤:算法

--10b4-2: 自上而下的上滤:效率

--10b4-3: 自下而上的下滤:算法

--10b4-4 : 自下而上的下滤:实例

--10B4-5: 自下而上的下滤:效率

--习题

-(c)堆排序

--10c-1: 算法

--10c-2: 就地

--10c-3: 实现

--10c-4: 实例

--习题

-(xa1)左式堆:结构

--10xa-1: 第一印象

--10xa1-2: 堆之合并

--10xa1-3: 奇中求正

--10xa1-4: NPL

--10xa1-5: 左倾性

--10xa1-6: 左展右敛

--习题

-(xa2)左式堆:合并

--10xa2-1: LeftHeap模板类

--10xa2-2: 算法

--10xa2-3: 实现

--10xa2-4: 实例

--习题

-(xa3)左式堆:插入与删除

--10xa3-1: 插入即是合并

--10xa3-2: 删除亦是合并

-本章测验

--本章测试

第十一章 串(上)

-(a)ADT

--11a-1: 定义+特点

--11a-2: 术语

--11a-3: ADT

--习题

-(b1)串匹配

--11b1-1: 问题与需求

--11b1-2 算法测评

--习题

-(b2)蛮力匹配

--11b2-1: 构思

--11b2-2: 版本一

--11b2-3: 版本二

--11b2-4: 性能

--习题

-(c1)KMP算法:从记忆力到预知力

--11c1-1: 重复匹配的前缀

--11c1-2: 不变性

--11c1-3 : 记忆力

--11c1-4: 预知力

--习题

-(c2)KMP算法:查询表

--11c2-1: 制表备查

--11c2-2: 主算法

--11c2-3: 实例

--习题

-(c3)KMP算法:理解next[]表

--11c3-1: 快速移动

--11c3-2: 避免回溯

--11C3-3: 通配哨兵

--习题

-(c4)KMP算法:构造next[]表

--11c4-1: 递推

--11c4-2: 算法

--11c4-3: 实现

--习题

-(c5)KMP算法:分摊分析

--11c5-1: 失之粗糙

--11c5-2: 精准估计

--习题

-(c6)KMP算法:再改进

--11c6-1: 美中不足

--11c6-2: 以卵击石

--11c6-3: 前车之覆

--11c6-4 后车之鉴

--11c6-5 : 可视对比

第十一章 串(下)

-(d1)BM_BC算法:以终为始

--11d1-1: 不对称性

--11d1-2: 善待教训

--11d1-3: 前轻后重

--11d1-4: 以终为始

-(d2)BM_BC算法:坏字符

--11d2-1: 坏字符

--11d2-2: 特殊情况

-(d3)BM_BC算法:构造bc[]

--11d3: 画家策略

-(d4)BM_BC算法:性能分析

--11d4-1: 最好情况

--11d4-2: 最坏情况

-(e1)BM_GS算法:好后缀

--11e1-1: 兼顾经验

--11e1-2: 好后缀策略

--11e1-3: 实例体验

-(e2)BM_GS算法:构造gs表

--11e2: 构造gs表

-(e3)BM_GS算法:综合性能

--11e3-1: BM之性能

--11e3-2: 各算法纵览

-(f1)Karp-Rabin算法:串即是数

--11f1-1: 化串为数

--11f1-2: 凡物皆数

--11f1-3: 串亦是数

-(f2)Karp-Rabin算法:散列

--11f2-1: 数位溢出

--11f2-2: 散列压缩

--11f2-3: 应对冲突

--11f2-4: 指纹更新

-本章测验

--本章测试

第十二章 排序

-(a1)快速排序:算法A

--12a1-1: 分而治之

--12a1-2: 轴点

--12a1-3: 构造轴点

--12a1-4: 单调性 + 不变性

-- 12a1-5: 实例

--习题

-(a2)快速排序:性能分析

--12a2-1: 不稳定 + 就地

--12a2-2: 最好情况 + 最坏情况

--12a2-3: 平均情况

--习题

-(a4)快速排序:变种

--12a4-1: 不变性

--12a4-2: 单调性

--12a4-3: 实现

--12a4-4: 实例

--12a4-5: 时间 + 空间 + 稳定性

-(b1)选取:众数

--12b1-1: 选取 + 中位数

--12b1-2: 从中位数到众数

--12b1-3: 从频繁数到众数

--12b1-4: 减而治之

--12b1-5: 算法实现

-(b3)选取:通用算法

--12b3-1: 尝试

--12b3-2: quickSelect

--12b3-3: linearSelect:算法

--12b3-4: linearSelect:性能分析A

--12b3-5 : linearSelect:性能分析B

--12b3-6 : linearSelect:性能分析C

--习题

-(c1) 希尔排序:Shell序列

--12c1-1: 策略

--12c1-2: 实例

--12c1-3: 循秩访问

--12c1-4: 插入排序

--12c1-5: Shell序列

--习题

-(c2)希尔排序:逆序对

--12c2-1: 邮资问题

--12c2-2: 定理K

--12c2-3: 逆序对

-本章测验

--本章测试

12b3-3: linearSelect:算法笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。