当前课程知识点:数据结构(上) >  第二章 向量(下) >  (d3)有序向量:Fibonacci查找 >  02D3-1 构思

返回《数据结构(上)》慕课在线视频课程列表

02D3-1 构思在线视频

02D3-1 构思

下一节:02D3-2 实现

返回《数据结构(上)》慕课在线视频列表

02D3-1 构思课程教案、知识点、字幕

欢迎同学们回来

我们这一节继续讨论有序向量的查找算法

在上一节,我们引入了所谓的二分查找

Binary search这样的一个概念

并且给出了一个基本的算法的版本

这个版本的复杂度

从渐近意义而言

应该是logn量级的

但如果进一步地细微地来

考察前面的系数

大致是1.5

我们也指出,这个1.5是可以改进的

我们现在就来看看,如何通过一种新的算法

也就是fibonaccian search

所谓的fibonacci查找

来对此进行改进

上一节的末尾

我们曾经以一个长度为7的有序向量为例

具体地给出了,在成功和失败情况下

平均查找长度的估算的过程

实际上,通过那个实例的推而广之

我们如果考虑更一般的情况

不难发现,此前所介绍的版本A

确实还有很大地改进余地

这样一个判断

更多的是,来自于这样一个观察事实

也就是说,版本A这个算法

实际上从用意上讲

它是试图通过使各种情况的搜索

在迭代次数上的平衡

来尽可能地回避掉最坏的情况

具体讲,比如所有的失败情况

大部分都会失败在同样深度的

也就是最深的这个位置

所以它表面上看是平衡的

但我们说,这其中却蕴涵着

很大的不平衡

因为我们可以看到,在整个这个查找的过程中

我们在任何一个位置上

如果要决定是向左或者是向右深入的话

其实我们所花费的成本

也就是比较的次数是不等的

准确地说

按照我们的版本,向左侧只需要一次比较

而向右侧却需要两次比较

所以这样一个表面上看

是非常公平的一个平衡

实际上在内部,却蕴涵着极大的不平衡

所以因此我们确实有理由怀疑

算法的效率是否已经达到最优

反过来,我们也可以得到

改进的一个思路

具体讲就是,既然我们已经看到

目前的机制中

向左侧确实会成本更低

向右侧更高

那么为什么我们不干脆

就把这个搜索的各种情况

如果能够画成

也是一个类似的这样一个树状图的话

做成左侧是更深的

而右侧是相对更浅的

这样一个表面上看的不平衡

却因为它恰好和这种成本

互相之间能做一个合适的补偿

反过来,有可能从整体上会得到更优

也就是说,使得整体的查找平均长度

有可能反而会缩短

具体来讲,越是成本低的转向

我们就越希望更多地做

越是成本更高的

我们越是希望它能更少地来做

所以这样的话

我们就得到了新的算法的改进的思路

那么具体这个思路怎么来兑现呢?

非常有意思

需要用到fibonacci数

不失一般性,假设我们的表的长度

也就是这个有序向量的长度N

就是某个fibonacci数减1的形式

如果确实是这样的一个形式的话

那么如这个图所示

如果这个整个长度

确实是一个fibonacci数减1的话

那我们就在其中

选择这么样一个特定的切分点

这个mi

这个mi是什么呢?

正好是整个长度

如果是第k个fibonacci数的话

那么它的位置就是

第k-1个fibonacci数,再减1

换而言之

如果以这个点为切分的话

那么左边这个子向量的长度

就恰好是第k-1个fibonacci数

再减1

而右边呢,恰巧是

fibonacci数第k-2项,再减1

可见这样一种切分的好处就是

在任何时候

只要按照这样来切分

切分下来,无论是向左还是向右

它都会从长度上讲

依然保持某个fibonacci数

再减1的形式

我们稍后就会看到,这种形式

实际上还非常巧

恰好是最优的

我们先来看,它具体是怎么实现的

数据结构(上)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第一章 绪论(上)

-(a)计算

--01-A-1: 计算

--01a-2: 绳索计算机

--01a-3: 尺规计算机

--01a-4: 算法

--01a-5 : 有穷性

--演示

--01a-6 : 好算法

--(a)计算--作业

-(b)计算模型

--01b-1: 性能测度

--01b-2: 问题规模

--01b-3: 最坏情况

--01b-4: 理想模型

--01b-5: 图灵机

--01b-6: 图灵机实例

--01b-7: RAM模型

--01b-8: RAM实例

-(b)计算模型--作业

-(c)大O记号

--01c-1: 主流长远

--01c-2: 大O记号

--01c-3: 高效解

--01c-4 : 有效解

--01c-5 : 难解

--01c-6: 2−Subset

--01c-7: 增长速度

-(c)大O记号--作业

第一章 绪论(下)

-(d)算法分析

--01d-1: 算法分析

--01d-2: 级数

--01d-3: 循环

--01d-4: 实例:非极端元素+起泡排序

--01d-5: 正确性的证明

--01d-6: 封底估算-1

--01d-7: 封底估算-2

-(d)算法分析--作业

-(e)迭代与递归

--01-E-1: 迭代与递归

--01-E-2: 减而治之

--01-E-3: 递归跟踪

--01-E-4: 递推方程

--01-E-5: 数组倒置

--01-E-6: 分而治之

--01-E-7: 二分递归:数组求和

--01E-8 二分递归:Max2

--01E-09: Max2:二分递归

-(e)迭代与递归--作业

-(xc)动态规划

--01XC-1: 动态规划

--01XC-2: Fib():递推方程

--01XC-3: Fib():封底估算

--01XC-4: Fib():递归跟踪

--01XC-5: Fib():迭代

--01XC-6: 最长公共子序列

-- 演示

--01XC-7: LCS:递归

--01XC-8: LCS:理解

--01XC-9: LCS:复杂度

--01XC-A: LCS:动态规划

-(xc)动态规划--作业

-本章测验--作业

第二章 向量(上)

-(a)接口与实现

--02A-1 接口与实现

--02A-2 向量ADT

--02A-3 接口操作实例

--02A-4 构造与析构

--02A-5 复制

-(a)接口与实现--作业

-(b)可扩充向量

--02B-1 可扩充向量

--02B-2 动态空间管理

--02B-3 递增式扩容

--02B-4 加倍式扩容

--02B-5 分摊复杂度

-(b)可扩充向量--作业

-(c)无序向量

--02C-1 概述

--02C-2: 循秩访问

--02C-3 插入

--02C-4 区间删除

--02C-5 单元素删除

--02C-6 查找

--02C-7 唯一化

--02C-8 遍历

-(c)无序向量--作业

-(d1)有序向量:唯一化

--02D1-1 有序性

--02D1-2 唯一化(低效版)

--02D1-3 复杂度(低效版)

--02D1-4 唯一化(高效版)

--02D1-5 实例与分析(高效版)

-(d1)有序向量:唯一化--作业

-(d2)有序向量:二分查找

--02D2-1 概述

--02D2-2 接口

--02D2-3 语义

--02D2-4 原理

--02D2-5 实现

--02D2-6 实例

--02D2-7 查找长度

-(d2)有序向量:二分查找--作业

第二章 向量(下)

-(d3)有序向量:Fibonacci查找

--02D3-1 构思

--02D3-2 实现

--02D3-3 实例

--02D3-4 最优性

-(d3)有序向量:Fibonacci查找--作业

-(d4)有序向量:二分查找(改进)

--02D4-1 构思

--02D4-2 版本B

--02D4-3 语义

--02D4-4 版本C

--02D4-5 正确性

-(d4)有序向量:二分查找(改进)--作业

-(d5)有序向量:插值查找

--02D5-1 原理

--02D5-2 实例

--02D5-3 性能分析

--02D5-4 字宽折半

--02D5-5 综合对比

-第二章 向量(下)--(d5)有序向量:插值查找

-(e)起泡排序

--02 E-1 构思

--02E-2 改进

--02E-3 反例

--02E-4 再改进

--02E-5 综合评价

-(e)起泡排序--作业

-(f)归并排序

--02F-1 归并排序:构思

--02F-2 归并排序:主算法

--02F-3 二路归并:实例

--02F-4 二路归并:实现

--02F-5 二路归并:正确性

--02F-6 归并排序:性能分析

-(f)归并排序--作业

-本章测验--作业

第三章 列表

-(a)接口与实现

--03A-1 从静态到动态

--03A-2 从向量到列表

--03A-3 从秩到位置

--03A-4 实现

-(a)接口与实现--作业

-(b)无序列表

--03B-1 循秩访问

--03B-2 查找

--03B-3 插入与复制

--03B-4 删除与析构

--03B-5 唯一化

-(b)无序列表--作业

-(c)有序列表

--03C-1 唯一化·构思

--03C-2 唯一化·实现

--03C-3 查找

-(c)有序列表--作业

-(d)选择排序

--03D-1 构思

--03D-2 实例

--03D-3 实现

--03D-4 推敲

--03D-5 selectMax()

--03D-6 性能

-(d)选择排序--作业

-(e)插入排序

--03E-1 经验

--03E-2 构思

--03E-3 对比

--03E-4 实例

--03E-5 实现

--03E-6 性能分析

--03E-7 平均性能

--03E-8 逆序对

-(e)插入排序--作业

-(xd)习题辅导:LightHouse

--03X D 习题辅导:LightHouse

-本章测验--作业

第四章 栈与队列

- (a)栈接口与实现

--04A-1 栈

--04A-2 实例

--04A-3 实现

- (a)栈接口与实现--作业

-(c1)栈应用:进制转换

--04C1-1 应用

--04C1-2 算法

--04C1-3 实现

-第四章 栈与队列--(c1)栈应用:进制转换

-(c2)栈应用:括号匹配

--04C2-1 实例

--04C2-2 尝试

--04C2-3 构思

--04C2-4 实现

--04C2-5 反思

--04C2-6 拓展

-(c2)栈应用:括号匹配--作业

-(c3)栈应用:栈混洗

--04C3-1 混洗

--04C3-2 计数

--04C3-3 甄别

--04C3-4 算法

--04C3-5 括号

-第四章 栈与队列--(c3)栈应用:栈混洗

-(c4)栈应用:中缀表达式求值

--04C4-1 把玩

--04C4-2 构思

--04C4-3 实例

--04C4-4 算法框架

--04C4-5 算法细节

--04C4−6A 实例A

--04C4−6B 实例B

--04C4−6C 实例C

--04C4-6D 实例D

-(c4)栈应用:中缀表达式求值--作业

-(c5)栈应用:逆波兰表达式

--04C5-1 简化

--04C5-2 体验

--04C5-3 手工

--04C5-4 算法

-第四章 栈与队列--(c5)栈应用:逆波兰表达式

-(d)队列接口与实现

--04D-1 接口

--04D-2 实例

--04D-3 实现

-第四章 栈与队列--本章测验

第五章 二叉树

-(a)树

--05A-1 动机

--05A-2 应用

--05A-3 有根树

--05A-4 有序树

--05A-5 路径+环路

--05A-6 连通+无环

--05A-7 深度+层次

-(a)树--作业

-(b)树的表示

--05B-1 表示法

--05B-2 父亲

--05B-3 孩子

--05B-4 父亲+孩子

--05B-5 长子+兄弟

-第五章 二叉树--(b)树的表示

-(c)二叉树

--05C-1 二叉树

--05C-2 真二叉树

--05C-3 描述多叉树

-(c)二叉树--作业

-(d)二叉树实现

--05D-1 BinNode类

--05D-2 BinNode接口

--05D-3 BinTree类

--05D-4 高度更新

--05D-5 节点插入

-(d)二叉树实现--作业

-(e1)先序遍历

--05E1-1 转化策略

--05E1-2 遍历规则

--05E1-3 递归实现

--05E1-4 迭代实现(1)

--05E1-5 实例

--05E1-6 新思路

--05E1-7 新构思

--05E1-8 迭代实现(2)

--05E1-9 实例

-(e1)先序遍历--作业

-(e2)中序遍历

--05E2-1 递归

--05E2-2 观察

--05E2-3 思路

--05E2-4 构思

--05E2-5 实现

--05E2-6 实例

--05E2-7 分摊分析

-第五章 二叉树--(e2)中序遍历

-(e4)层次遍历

--05E4-1 次序

--05E4-2 实现

--05E4-3 实例

-第五章 二叉树--(e4)层次遍历

-(e5)重构

--05E5-1 遍历序列

--05E5-2 (先序|后序)+中序

--05E5-3 (先序+后序)x真

-(e5)重构--作业

-本章测验--作业

第六章 图

-(a)概述

--06A-1 邻接+关联

--06A-2 无向+有向

--06A-3 路径+环路

-(a)概述--作业

-(b1)邻接矩阵

--06B1-1 接口

--06B1-2 邻接矩阵+关联矩阵

--06B1-3 实例

--06B1-4 顶点和边

--06B1-5 邻接矩阵

--06B1-6 顶点静态操作

--06B1-7 边操作

--06B1-8 顶点动态操作

--06B1-9 综合评价

-(b1)邻接矩阵--作业

-(c)广度优先搜索

--06C-1 化繁为简

--06C-2 策略

--06C-3 实现

--06C-4 可能情况

--06C-5 实例

--06C-6 多连通

--06C-7 复杂度

--06C-8 最短路径

-(c)广度优先搜索--作业

-(d)深度优先搜索

--06D-1 算法

--06D-2 框架

--06D-3 细节

--06D-4 无向图

--06D-5 有向图

--06D-6 多可达域

--06D-7 嵌套引理

-(d)深度优先搜索--作业

-第六章 图--本章测验

02D3-1 构思笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。