当前课程知识点:数据结构(上) >  第二章 向量(下) >  (d5)有序向量:插值查找 >  02D5-3 性能分析

返回《数据结构(上)》慕课在线视频课程列表

02D5-3 性能分析在线视频

02D5-3 性能分析

下一节:02D5-4 字宽折半

返回《数据结构(上)》慕课在线视频列表

02D5-3 性能分析课程教案、知识点、字幕

插值查找平均而言会怎么样?

那么这里我们需要用到一个非常基础

类似引理的结论

这个结论是这么说的

在插值查找算法中

每经过一次迭代

或者说每经过一次比较

我们都可以将查找的范围

也就是我们所说的

减而治之之后 剩余的部分

由原先的规模n 缩减为根号n

通过姚先生

包括其他人在早期的一些精确的论证

可以证明这一点

在习题解析第二章的第24题中

我们也花了相当的篇幅

给出了较为严密的这样的一个证明

所以在这里

我们不妨把这个作为一个事实

再说一遍 每经过一次比较

插值查找算法

就可以将查找范围从n缩短为根号n

那么根据这样的一个事实

我们就不难得出这个算法整体的效率了

也就是平均而言

大致需要做多少次迭代

因为查找区间的宽度必然是从n

变到根号n 然后继续开根号

再开根号 一直开下去

直到开到足够小的一个数

平凡的情况

那么在此期间

我们总共要迭代多少次呢?

我们不妨把它写出来

每一次开方 相当于在做一次1/2次方

每做一次 就是1/2次方

累计起来 如果是叠加了k步的话

那么当然是1/2次方的k次方

然后再去做n的指数 这么多幂

那么这个数在什么情况下

又小于2了呢

那么这个应该是很基本的数学功夫

这样的一个代数推导

我们留给大家

我们说最后的结论是

总体只需要log再取一次log

loglogn这么多次迭代

当然 从渐近的意义上讲

比原来说的logn要小很多

从这个图我们也可以大致看出来

如果原来这个是n的话

很快就缩减为根号n

再根号根号n 根号根号根号n

一直下去 很快就会收敛 收敛的非常快

当然我们这里跟此前我们所强调的一样

我们并不希望过多的使用数学

而是应该恰当的使用数学

比如在很多时候 你应该学会准确的估算

那么我们来看看

对于这个例子而言

我们同样可以来估算

数据结构(上)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第一章 绪论(上)

-(a)计算

--01-A-1: 计算

--01a-2: 绳索计算机

--01a-3: 尺规计算机

--01a-4: 算法

--01a-5 : 有穷性

--演示

--01a-6 : 好算法

--(a)计算--作业

-(b)计算模型

--01b-1: 性能测度

--01b-2: 问题规模

--01b-3: 最坏情况

--01b-4: 理想模型

--01b-5: 图灵机

--01b-6: 图灵机实例

--01b-7: RAM模型

--01b-8: RAM实例

-(b)计算模型--作业

-(c)大O记号

--01c-1: 主流长远

--01c-2: 大O记号

--01c-3: 高效解

--01c-4 : 有效解

--01c-5 : 难解

--01c-6: 2−Subset

--01c-7: 增长速度

-(c)大O记号--作业

第一章 绪论(下)

-(d)算法分析

--01d-1: 算法分析

--01d-2: 级数

--01d-3: 循环

--01d-4: 实例:非极端元素+起泡排序

--01d-5: 正确性的证明

--01d-6: 封底估算-1

--01d-7: 封底估算-2

-(d)算法分析--作业

-(e)迭代与递归

--01-E-1: 迭代与递归

--01-E-2: 减而治之

--01-E-3: 递归跟踪

--01-E-4: 递推方程

--01-E-5: 数组倒置

--01-E-6: 分而治之

--01-E-7: 二分递归:数组求和

--01E-8 二分递归:Max2

--01E-09: Max2:二分递归

-(e)迭代与递归--作业

-(xc)动态规划

--01XC-1: 动态规划

--01XC-2: Fib():递推方程

--01XC-3: Fib():封底估算

--01XC-4: Fib():递归跟踪

--01XC-5: Fib():迭代

--01XC-6: 最长公共子序列

-- 演示

--01XC-7: LCS:递归

--01XC-8: LCS:理解

--01XC-9: LCS:复杂度

--01XC-A: LCS:动态规划

-(xc)动态规划--作业

-本章测验--作业

第二章 向量(上)

-(a)接口与实现

--02A-1 接口与实现

--02A-2 向量ADT

--02A-3 接口操作实例

--02A-4 构造与析构

--02A-5 复制

-(a)接口与实现--作业

-(b)可扩充向量

--02B-1 可扩充向量

--02B-2 动态空间管理

--02B-3 递增式扩容

--02B-4 加倍式扩容

--02B-5 分摊复杂度

-(b)可扩充向量--作业

-(c)无序向量

--02C-1 概述

--02C-2: 循秩访问

--02C-3 插入

--02C-4 区间删除

--02C-5 单元素删除

--02C-6 查找

--02C-7 唯一化

--02C-8 遍历

-(c)无序向量--作业

-(d1)有序向量:唯一化

--02D1-1 有序性

--02D1-2 唯一化(低效版)

--02D1-3 复杂度(低效版)

--02D1-4 唯一化(高效版)

--02D1-5 实例与分析(高效版)

-(d1)有序向量:唯一化--作业

-(d2)有序向量:二分查找

--02D2-1 概述

--02D2-2 接口

--02D2-3 语义

--02D2-4 原理

--02D2-5 实现

--02D2-6 实例

--02D2-7 查找长度

-(d2)有序向量:二分查找--作业

第二章 向量(下)

-(d3)有序向量:Fibonacci查找

--02D3-1 构思

--02D3-2 实现

--02D3-3 实例

--02D3-4 最优性

-(d3)有序向量:Fibonacci查找--作业

-(d4)有序向量:二分查找(改进)

--02D4-1 构思

--02D4-2 版本B

--02D4-3 语义

--02D4-4 版本C

--02D4-5 正确性

-(d4)有序向量:二分查找(改进)--作业

-(d5)有序向量:插值查找

--02D5-1 原理

--02D5-2 实例

--02D5-3 性能分析

--02D5-4 字宽折半

--02D5-5 综合对比

-第二章 向量(下)--(d5)有序向量:插值查找

-(e)起泡排序

--02 E-1 构思

--02E-2 改进

--02E-3 反例

--02E-4 再改进

--02E-5 综合评价

-(e)起泡排序--作业

-(f)归并排序

--02F-1 归并排序:构思

--02F-2 归并排序:主算法

--02F-3 二路归并:实例

--02F-4 二路归并:实现

--02F-5 二路归并:正确性

--02F-6 归并排序:性能分析

-(f)归并排序--作业

-本章测验--作业

第三章 列表

-(a)接口与实现

--03A-1 从静态到动态

--03A-2 从向量到列表

--03A-3 从秩到位置

--03A-4 实现

-(a)接口与实现--作业

-(b)无序列表

--03B-1 循秩访问

--03B-2 查找

--03B-3 插入与复制

--03B-4 删除与析构

--03B-5 唯一化

-(b)无序列表--作业

-(c)有序列表

--03C-1 唯一化·构思

--03C-2 唯一化·实现

--03C-3 查找

-(c)有序列表--作业

-(d)选择排序

--03D-1 构思

--03D-2 实例

--03D-3 实现

--03D-4 推敲

--03D-5 selectMax()

--03D-6 性能

-(d)选择排序--作业

-(e)插入排序

--03E-1 经验

--03E-2 构思

--03E-3 对比

--03E-4 实例

--03E-5 实现

--03E-6 性能分析

--03E-7 平均性能

--03E-8 逆序对

-(e)插入排序--作业

-(xd)习题辅导:LightHouse

--03X D 习题辅导:LightHouse

-本章测验--作业

第四章 栈与队列

- (a)栈接口与实现

--04A-1 栈

--04A-2 实例

--04A-3 实现

- (a)栈接口与实现--作业

-(c1)栈应用:进制转换

--04C1-1 应用

--04C1-2 算法

--04C1-3 实现

-第四章 栈与队列--(c1)栈应用:进制转换

-(c2)栈应用:括号匹配

--04C2-1 实例

--04C2-2 尝试

--04C2-3 构思

--04C2-4 实现

--04C2-5 反思

--04C2-6 拓展

-(c2)栈应用:括号匹配--作业

-(c3)栈应用:栈混洗

--04C3-1 混洗

--04C3-2 计数

--04C3-3 甄别

--04C3-4 算法

--04C3-5 括号

-第四章 栈与队列--(c3)栈应用:栈混洗

-(c4)栈应用:中缀表达式求值

--04C4-1 把玩

--04C4-2 构思

--04C4-3 实例

--04C4-4 算法框架

--04C4-5 算法细节

--04C4−6A 实例A

--04C4−6B 实例B

--04C4−6C 实例C

--04C4-6D 实例D

-(c4)栈应用:中缀表达式求值--作业

-(c5)栈应用:逆波兰表达式

--04C5-1 简化

--04C5-2 体验

--04C5-3 手工

--04C5-4 算法

-第四章 栈与队列--(c5)栈应用:逆波兰表达式

-(d)队列接口与实现

--04D-1 接口

--04D-2 实例

--04D-3 实现

-第四章 栈与队列--本章测验

第五章 二叉树

-(a)树

--05A-1 动机

--05A-2 应用

--05A-3 有根树

--05A-4 有序树

--05A-5 路径+环路

--05A-6 连通+无环

--05A-7 深度+层次

-(a)树--作业

-(b)树的表示

--05B-1 表示法

--05B-2 父亲

--05B-3 孩子

--05B-4 父亲+孩子

--05B-5 长子+兄弟

-第五章 二叉树--(b)树的表示

-(c)二叉树

--05C-1 二叉树

--05C-2 真二叉树

--05C-3 描述多叉树

-(c)二叉树--作业

-(d)二叉树实现

--05D-1 BinNode类

--05D-2 BinNode接口

--05D-3 BinTree类

--05D-4 高度更新

--05D-5 节点插入

-(d)二叉树实现--作业

-(e1)先序遍历

--05E1-1 转化策略

--05E1-2 遍历规则

--05E1-3 递归实现

--05E1-4 迭代实现(1)

--05E1-5 实例

--05E1-6 新思路

--05E1-7 新构思

--05E1-8 迭代实现(2)

--05E1-9 实例

-(e1)先序遍历--作业

-(e2)中序遍历

--05E2-1 递归

--05E2-2 观察

--05E2-3 思路

--05E2-4 构思

--05E2-5 实现

--05E2-6 实例

--05E2-7 分摊分析

-第五章 二叉树--(e2)中序遍历

-(e4)层次遍历

--05E4-1 次序

--05E4-2 实现

--05E4-3 实例

-第五章 二叉树--(e4)层次遍历

-(e5)重构

--05E5-1 遍历序列

--05E5-2 (先序|后序)+中序

--05E5-3 (先序+后序)x真

-(e5)重构--作业

-本章测验--作业

第六章 图

-(a)概述

--06A-1 邻接+关联

--06A-2 无向+有向

--06A-3 路径+环路

-(a)概述--作业

-(b1)邻接矩阵

--06B1-1 接口

--06B1-2 邻接矩阵+关联矩阵

--06B1-3 实例

--06B1-4 顶点和边

--06B1-5 邻接矩阵

--06B1-6 顶点静态操作

--06B1-7 边操作

--06B1-8 顶点动态操作

--06B1-9 综合评价

-(b1)邻接矩阵--作业

-(c)广度优先搜索

--06C-1 化繁为简

--06C-2 策略

--06C-3 实现

--06C-4 可能情况

--06C-5 实例

--06C-6 多连通

--06C-7 复杂度

--06C-8 最短路径

-(c)广度优先搜索--作业

-(d)深度优先搜索

--06D-1 算法

--06D-2 框架

--06D-3 细节

--06D-4 无向图

--06D-5 有向图

--06D-6 多可达域

--06D-7 嵌套引理

-(d)深度优先搜索--作业

-第六章 图--本章测验

02D5-3 性能分析笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。