当前课程知识点:数据结构(上) >  第五章 二叉树 >  (c)二叉树 >  05C-2 真二叉树

返回《数据结构(上)》慕课在线视频课程列表

05C-2 真二叉树在线视频

05C-2 真二叉树

下一节:05C-3 描述多叉树

返回《数据结构(上)》慕课在线视频列表

05C-2 真二叉树课程教案、知识点、字幕

我们刚才所介绍的一般性的二叉树

只对每个节点的出度

做了个上限的约定

也就是说不得超过2

换而言之 可能有三种情况

有些节点是没有出度的

也就是所谓的叶子节点

对应的指标是0

另一个极端是有些节点

可能有两个孩子

那么也就是对应于指标2

还有一些节点呢

只有一个孩子

对应的指标也就是1

比如在这样一幅图中

我们就将每个节点的指标

也就是它的出度

记在这个节点本身上

我们可以看到 0度的节点

也就是我们所说的叶子节点

以及满度的和两度的节点

双分支的

以及1度的单分支的节点

这样一般性的一棵二叉树在很多操作

包括算法的实现

以及对算法的理解上

都会引来一些不必要的麻烦

而反过来一个比较有效的改进方法

就是将任何的这样一棵

一般性的二叉树

转化为一棵所谓的真二叉树

那么什么是一棵真二叉树呢?

简而言之就是

每个节点的出度都是偶数

或者是0

或者是2

但是绝对不可能是1

为此我们可以假想着

为每一个节点添加上

足够多个孩子节点

具体来说 如果某一个节点

原来的度数是0

那么我们就在它的下方

通过增加两个新的孩子

使之变成两度

如果某一个节点原先的度数是1

我们就在缺失的那一侧

同样地引入一个新的孩子节点

从而同样使得它的度数由1变成2

这样一棵新得到的二叉树中

就不再含有1度的节点

我们称这种二叉树为真二叉树

请注意 尽管表面看来

这里添加了很多节点

但是不难证明 从渐近的意义上讲

它们的总数依然保持

与原先的规模相当

而更重要的是在稍后

我们实现相应的算法的时候就会看到

这种添加实际上完全是假想的

你并不需要真正去引入它们

你只需要假想着它们存在

你的算法就可以更加简洁的实现

而且更加简洁的被理解

这样一种策略

就犹如伽利略所擅长的那种

在头脑中的虚拟实验一样

你只要想象它

它背后的逻辑是对的

你并不需要在实际中

将它严格的兑现

数据结构(上)课程列表:

第零章

-选课之前

--写在选课之前

--宣传片

-考核方式

--考核方式

-OJ系统说明

--关于OJ

--1-注册与登录

--2-界面与选课

--3-提交测试

-关于课程教材与讲义

--课程教材与讲义

-关于讨论区

--关于讨论区

-微信平台

--html

-PA晋级申请

--PA晋级

--MOOC --> THU 晋级申请专区

--THU --> CST 晋级申请专区

--编程作业不过瘾?且来清华试比高!

第一章 绪论(上)

-(a)计算

--01-A-1: 计算

--01a-2: 绳索计算机

--01a-3: 尺规计算机

--01a-4: 算法

--01a-5 : 有穷性

--演示

--01a-6 : 好算法

--(a)计算--作业

-(b)计算模型

--01b-1: 性能测度

--01b-2: 问题规模

--01b-3: 最坏情况

--01b-4: 理想模型

--01b-5: 图灵机

--01b-6: 图灵机实例

--01b-7: RAM模型

--01b-8: RAM实例

-(b)计算模型--作业

-(c)大O记号

--01c-1: 主流长远

--01c-2: 大O记号

--01c-3: 高效解

--01c-4 : 有效解

--01c-5 : 难解

--01c-6: 2−Subset

--01c-7: 增长速度

-(c)大O记号--作业

第一章 绪论(下)

-(d)算法分析

--01d-1: 算法分析

--01d-2: 级数

--01d-3: 循环

--01d-4: 实例:非极端元素+起泡排序

--01d-5: 正确性的证明

--01d-6: 封底估算-1

--01d-7: 封底估算-2

-(d)算法分析--作业

-(e)迭代与递归

--01-E-1: 迭代与递归

--01-E-2: 减而治之

--01-E-3: 递归跟踪

--01-E-4: 递推方程

--01-E-5: 数组倒置

--01-E-6: 分而治之

--01-E-7: 二分递归:数组求和

--01E-8 二分递归:Max2

--01E-09: Max2:二分递归

-(e)迭代与递归--作业

-(xc)动态规划

--01XC-1: 动态规划

--01XC-2: Fib():递推方程

--01XC-3: Fib():封底估算

--01XC-4: Fib():递归跟踪

--01XC-5: Fib():迭代

--01XC-6: 最长公共子序列

-- 演示

--01XC-7: LCS:递归

--01XC-8: LCS:理解

--01XC-9: LCS:复杂度

--01XC-A: LCS:动态规划

-(xc)动态规划--作业

-本章测验--作业

第二章 向量(上)

-(a)接口与实现

--02A-1 接口与实现

--02A-2 向量ADT

--02A-3 接口操作实例

--02A-4 构造与析构

--02A-5 复制

-(a)接口与实现--作业

-(b)可扩充向量

--02B-1 可扩充向量

--02B-2 动态空间管理

--02B-3 递增式扩容

--02B-4 加倍式扩容

--02B-5 分摊复杂度

-(b)可扩充向量--作业

-(c)无序向量

--02C-1 概述

--02C-2: 循秩访问

--02C-3 插入

--02C-4 区间删除

--02C-5 单元素删除

--02C-6 查找

--02C-7 唯一化

--02C-8 遍历

-(c)无序向量--作业

-(d1)有序向量:唯一化

--02D1-1 有序性

--02D1-2 唯一化(低效版)

--02D1-3 复杂度(低效版)

--02D1-4 唯一化(高效版)

--02D1-5 实例与分析(高效版)

-(d1)有序向量:唯一化--作业

-(d2)有序向量:二分查找

--02D2-1 概述

--02D2-2 接口

--02D2-3 语义

--02D2-4 原理

--02D2-5 实现

--02D2-6 实例

--02D2-7 查找长度

-(d2)有序向量:二分查找--作业

第二章 向量(下)

-(d3)有序向量:Fibonacci查找

--02D3-1 构思

--02D3-2 实现

--02D3-3 实例

--02D3-4 最优性

-(d3)有序向量:Fibonacci查找--作业

-(d4)有序向量:二分查找(改进)

--02D4-1 构思

--02D4-2 版本B

--02D4-3 语义

--02D4-4 版本C

--02D4-5 正确性

-(d4)有序向量:二分查找(改进)--作业

-(d5)有序向量:插值查找

--02D5-1 原理

--02D5-2 实例

--02D5-3 性能分析

--02D5-4 字宽折半

--02D5-5 综合对比

-第二章 向量(下)--(d5)有序向量:插值查找

-(e)起泡排序

--02 E-1 构思

--02E-2 改进

--02E-3 反例

--02E-4 再改进

--02E-5 综合评价

-(e)起泡排序--作业

-(f)归并排序

--02F-1 归并排序:构思

--02F-2 归并排序:主算法

--02F-3 二路归并:实例

--02F-4 二路归并:实现

--02F-5 二路归并:正确性

--02F-6 归并排序:性能分析

-(f)归并排序--作业

-本章测验--作业

第三章 列表

-(a)接口与实现

--03A-1 从静态到动态

--03A-2 从向量到列表

--03A-3 从秩到位置

--03A-4 实现

-(a)接口与实现--作业

-(b)无序列表

--03B-1 循秩访问

--03B-2 查找

--03B-3 插入与复制

--03B-4 删除与析构

--03B-5 唯一化

-(b)无序列表--作业

-(c)有序列表

--03C-1 唯一化·构思

--03C-2 唯一化·实现

--03C-3 查找

-(c)有序列表--作业

-(d)选择排序

--03D-1 构思

--03D-2 实例

--03D-3 实现

--03D-4 推敲

--03D-5 selectMax()

--03D-6 性能

-(d)选择排序--作业

-(e)插入排序

--03E-1 经验

--03E-2 构思

--03E-3 对比

--03E-4 实例

--03E-5 实现

--03E-6 性能分析

--03E-7 平均性能

--03E-8 逆序对

-(e)插入排序--作业

-(xd)习题辅导:LightHouse

--03X D 习题辅导:LightHouse

-本章测验--作业

第四章 栈与队列

- (a)栈接口与实现

--04A-1 栈

--04A-2 实例

--04A-3 实现

- (a)栈接口与实现--作业

-(c1)栈应用:进制转换

--04C1-1 应用

--04C1-2 算法

--04C1-3 实现

-第四章 栈与队列--(c1)栈应用:进制转换

-(c2)栈应用:括号匹配

--04C2-1 实例

--04C2-2 尝试

--04C2-3 构思

--04C2-4 实现

--04C2-5 反思

--04C2-6 拓展

-(c2)栈应用:括号匹配--作业

-(c3)栈应用:栈混洗

--04C3-1 混洗

--04C3-2 计数

--04C3-3 甄别

--04C3-4 算法

--04C3-5 括号

-第四章 栈与队列--(c3)栈应用:栈混洗

-(c4)栈应用:中缀表达式求值

--04C4-1 把玩

--04C4-2 构思

--04C4-3 实例

--04C4-4 算法框架

--04C4-5 算法细节

--04C4−6A 实例A

--04C4−6B 实例B

--04C4−6C 实例C

--04C4-6D 实例D

-(c4)栈应用:中缀表达式求值--作业

-(c5)栈应用:逆波兰表达式

--04C5-1 简化

--04C5-2 体验

--04C5-3 手工

--04C5-4 算法

-第四章 栈与队列--(c5)栈应用:逆波兰表达式

-(d)队列接口与实现

--04D-1 接口

--04D-2 实例

--04D-3 实现

-第四章 栈与队列--本章测验

第五章 二叉树

-(a)树

--05A-1 动机

--05A-2 应用

--05A-3 有根树

--05A-4 有序树

--05A-5 路径+环路

--05A-6 连通+无环

--05A-7 深度+层次

-(a)树--作业

-(b)树的表示

--05B-1 表示法

--05B-2 父亲

--05B-3 孩子

--05B-4 父亲+孩子

--05B-5 长子+兄弟

-第五章 二叉树--(b)树的表示

-(c)二叉树

--05C-1 二叉树

--05C-2 真二叉树

--05C-3 描述多叉树

-(c)二叉树--作业

-(d)二叉树实现

--05D-1 BinNode类

--05D-2 BinNode接口

--05D-3 BinTree类

--05D-4 高度更新

--05D-5 节点插入

-(d)二叉树实现--作业

-(e1)先序遍历

--05E1-1 转化策略

--05E1-2 遍历规则

--05E1-3 递归实现

--05E1-4 迭代实现(1)

--05E1-5 实例

--05E1-6 新思路

--05E1-7 新构思

--05E1-8 迭代实现(2)

--05E1-9 实例

-(e1)先序遍历--作业

-(e2)中序遍历

--05E2-1 递归

--05E2-2 观察

--05E2-3 思路

--05E2-4 构思

--05E2-5 实现

--05E2-6 实例

--05E2-7 分摊分析

-第五章 二叉树--(e2)中序遍历

-(e4)层次遍历

--05E4-1 次序

--05E4-2 实现

--05E4-3 实例

-第五章 二叉树--(e4)层次遍历

-(e5)重构

--05E5-1 遍历序列

--05E5-2 (先序|后序)+中序

--05E5-3 (先序+后序)x真

-(e5)重构--作业

-本章测验--作业

第六章 图

-(a)概述

--06A-1 邻接+关联

--06A-2 无向+有向

--06A-3 路径+环路

-(a)概述--作业

-(b1)邻接矩阵

--06B1-1 接口

--06B1-2 邻接矩阵+关联矩阵

--06B1-3 实例

--06B1-4 顶点和边

--06B1-5 邻接矩阵

--06B1-6 顶点静态操作

--06B1-7 边操作

--06B1-8 顶点动态操作

--06B1-9 综合评价

-(b1)邻接矩阵--作业

-(c)广度优先搜索

--06C-1 化繁为简

--06C-2 策略

--06C-3 实现

--06C-4 可能情况

--06C-5 实例

--06C-6 多连通

--06C-7 复杂度

--06C-8 最短路径

-(c)广度优先搜索--作业

-(d)深度优先搜索

--06D-1 算法

--06D-2 框架

--06D-3 细节

--06D-4 无向图

--06D-5 有向图

--06D-6 多可达域

--06D-7 嵌套引理

-(d)深度优先搜索--作业

-第六章 图--本章测验

05C-2 真二叉树笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。