当前课程知识点:大学物理1 (力学、热学) > 期末考试 > 期末考试--期末考试Part3 > 9.2 统计规律
在这节当中我将要为大家介绍统计规律
什么是统计规律呢
它是指在一定的宏观条件下
大量偶然事件在整体上表现的确定性规律
比如说我们抛硬币
那么我们一次抛硬币的时候
那个硬币字朝上或者字朝下发生的事呢是偶然的
有可能朝上也可能朝下
完全随机但是如果我抛硬币抛很多很多次
那么你就可以发现字朝上的情况总是占差不多一半的样子
这个就是统计规律
那么统计规律里面有一个非常重要的一个说法
叫什么呢 叫一个粒子的多次行为
比如说我抛硬币
一个硬币我抛很多很多次
那么另外一种情况是什么呢
是多个粒子的一次行为
我把一大堆硬币一起抛
那么这两种结果呢它的结果是相同的
这是统计力学里的一个基本假设
下面我们看一个有趣的例子 扔飞镖
那么我们发现在扔飞镖的时候
少量的飞镖你会发现落在榜上的位置完全是随机的
但是如果我们扔大量的飞镖来看一下这个图
你会发现这个飞镖落在不同环的数目
会呈现一个规律
那么假设我们人呢没有斜视
那么总是落在中间十环的这个地方
它的数目是最多的而越往边上的越少
那么这个曲线就叫做分布曲线
这是一个统计规律
那么下面我给大家演示一下伽尔顿板的这个实验
这个实验非常有意思
下面我给大家演示一下伽尔顿板的实验
那么伽尔顿板的构造是这样的
上面有很多小球
这有一个阀门
下面有很多钉子
待会打开阀门小球就会从这个地方掉下来
和这个钉子随机的碰撞
那么它掉落的下面位置也是有一个随机的分布
那么好了 我们来看一看它是什么样的
当我们把这个阀门打开一点点的时候
少量小球就开始掉落
我们看到啊它什么效果呢
确实是每个小球掉落位置是随机的
掉到哪个地方都有可能
当把这个阀门开大
大量小球掉落的时候
我们看一看这个效果是什么效果
对于每一个球呢它都是随机的掉到某一个格子里面
但是呢在整体上大量小球就表现出这样一个统计规律
好 那么我们回过头来
从刚才的演示实验我们可以看到在伽尔顿板中
如果少量的小球从上面落下来
由于和这些钉子的随机碰撞
有可能落在下面任何一个格子里面
这是完全随机的偶然事件
但是呢当这样大量的小球落下来之后呢
就会呈现这样一个统计规律
它的结论是什么呢
小球落在其中一个格子时间是偶然事件
但是大量小球就要服从一个统计规律
总是中间要多边上要少
这个呢我们可以说小球按照这个
空格的空间位置x呈现一个分布曲线
这个曲线也就是这个样子
但是这里面一定要强调
只要谈到统计规律就需要大量
如果量不够大那就看不到统计规律的
原因是什么呢
因为统计规律必然要伴随涨落
什么意思啊
如果我们抛硬币的时候如果抛一万个硬币
通常呢有一半的硬币朝上
朝上的数目并不是5000个
它是每次的操作是来回变化的
那么呢于统计规律偏移的这种现象叫什么呢
就叫做涨落
涨落有的时候是大有的时候是小
有的时候是正有的时候是负
比如我们这个应该是5000个
但也可能是6000个也有可能是5500个
也有可能是4500个这都不一定
那么描述涨落的这个方式通过数学的方差来描述它
比如说我们定义
对应比来说字朝下的这个数据叫0
字朝上的这个数据叫1
那么字朝下的概率是二分之一
字朝上的概率也应该是二分之一
那么对应的值加起来就叫做什么呀
就叫做投硬币的平均值
那么它的结果肯定是二分之一
但是事实上每次投硬币的时候都不会投出二分之一
比如说字有可能朝下
那么它和平均值的偏差是0-1/2 是-1/2
但是如果字朝上它的值是1
和平均值的偏差是1-1/2 正的1/2
为了保证它这两种偏差不互相抵消
我们把它都平方一下
然后呢和相应的概率相乘
这个东西叫方差
那么它的结果是多少呢
这个地方算就是1/4
这边算也是1/4
再相乘 在加起来刚好也是1/4
因此投硬币它的方差就是1/4
那么这个方差它有一个缺点
它和平均值比,它是平均值量纲的平方
为了保障它和平均值具有一样的量纲
我把方差开一个根号得到平方根
那么这个叫做标准差
它具有和平均值一样的量纲
方差和标准差都是描述涨落的标准的一个量
好了 我们改成扔N个硬币而不是扔一个
那假设这N个硬币之间是完全独立的
那么它的平均值就可以直接相加等于N/2
因为每个硬币之间都是独立的
它的涨落也是独立的
那么它的方差也可以直接相加
是4分之N
那么获得的标准差就是二分之根号N
这是什么意思呢
这个告诉我们 标准差和平均值的比值
也就是相对涨落为根号N分之1
它的含义是随着扔硬币的数目越多
它的相对涨落也就越小
我们可以用伽尔顿板的这个例子呢
从新来说一下这个事实
比如说落在某一个区间△x小格子里
它的小球的数目是△N
那么它对应的涨落的幅度就是根号△N
就是标准差
相对涨落是多少呢
相对涨落就是它俩相除等于根号N分之一
那比如说落在格子里的△N是一百万
这样它绝对涨落是多少呢
把这个一算 就是一千
也就是它的绝对的涨落
而相对的涨落是多少呢
这个百分比一除 除一百万
那就是千分之一 它什么含义啊
它的含义是某一次实验落在这个格子里面的数目
很有可能是
九十九万九千到一百万零一千这样的一个数目
那么如果落在某一个格子里的分子数是1
这个涨落就变得不一样了
绝对涨落当然还是1
但是相对涨落就是百分之百
可见落在这个格子里分子数越小
那么它的相对涨落也就越大
结论是什么呢
结论就是分子数越多
相对涨落就越小
也就是什么呢统计带来的误差也就越小
这个呢是在试验中有表现的
比如说我们测一些微小的电流
那么你会发现电流涨落
这个涨落呢在电子器件里面有个名字叫做热噪声
最后给大家留一个问题
我们来想一想
为什么我们用相对涨落来描述它的对实验的偏离
不是用绝对涨落
我们在宏观试验中测量到的东西是什么
好了 这节我们就讲到这 同学们再见
-绪论
--绪论
-质点动力学(一)
-质点动力学(二)
-本章作业
-牛顿三定律、常见力
-应用牛顿定律解题
-惯性力, 潮汐力
-本章作业
-动量, 冲量, 动量守恒
-质心与质心运动定理
-两体问题
-质点和质点系角动量,角动量守恒
-本章作业
-功和动能
-引力,保守力和势能
-势能曲线、功能原理和有心力场
-克尼希定理、质心系中的功能原理
-流体简介
-本章作业
-刚体定轴转动(一)--作业
-刚体定轴转动(二)
-本章作业
-简谐振动, 频谱, 非线性振动简介
-同振动方向振动合成
-不同振动方向振动合成
-本章作业
-简谐波
-惠更斯原理、机械波的半波损失
-波的叠加和干涉 驻波
-多普勒效应
-本章作业
-洛仑兹变换
-相对论速度合成
-相对论动力学基础
-本章作业
-宏观和微观
-温度
-麦克斯韦速率分布律
-本章作业
-玻耳兹曼分布律和平均自由程
-实际气体
-热力学第一定律
-本章作业
-循环过程
-热力学第二定律
-玻耳兹曼熵
-例题
-克劳修斯熵
-气-液-固相变
-本章作业
-期末考试--期末考试Part1
-期末考试--期末考试Part2
-期末考试--期末考试Part3