当前课程知识点:线性代数(1) > 第二十讲 矩阵的对角化 > 20.4 同时对角化 > default
上面我们主要谈了
一个矩阵可对角化的条件和应用
那么对于两个同阶的矩阵
我们关心下面的问题
给定两个n阶的矩阵A和B
我们问什么时候
存在着一个可逆矩阵P
使得P逆AP等于lambda1
P逆BP等于lambda2同时为对角阵
也就是说AB同时对角化
那先看必要条件
我们说P逆AP等于lambda1
P逆BP等于lambda2同时为对角阵
意味着AB有n个公共特征向量
或者说叫共同的特征向量
如果说AB有相同的特征向量
矩阵P使得P逆AP等于对角阵lambda1
P逆BP等于lambda2为对角阵的话
我们就一定有AB等于BA
这个容易看到
事实上AB相乘等于Plambda1P逆
乘以Plambda2P逆
那就等于Plambda1lambda2乘以P逆
lambda1lambda2为对角阵 乘法可以交换
同样地去翻回去插上这个P逆P
就等于BA
所以如果两个矩阵
可同时对角化的话
它们俩一定可以交换
那重要的是这个逆命题
也是成立的
我们不加证明的给出下面的定理
如果说两个矩阵A和B
我们已经知道它都可以对角化
那么AB等于BA
则AB可同时对角化
我们注意到
如果我们有Ax等于lambdax的话
那我ABx就等于
因为可以交换就等于BAx
就等于B去乘以lambdax
那把lambda提到前面去
就等于lambda乘以Bx
这两件事情对比一下就是说
Bx和x是A的属于同一个特征值
lambda的特征向量
我们看简单的情况
假设这个A的特征值
是两两互异的
那么所有的特征子空间
都是1维的
于是我Bx和x
如果都是A的属于同一特征值的
特征向量
它的特征子空间的维数
又是1的话
那Bx一定是x的一个倍数
也就是说x也是B的特征向量
从而AB就有公共特征向量矩阵
那么从而它可以对角化
那这样在这种简单的情况下
我们就证明了说
对于n阶的复矩阵A和B
如果矩阵A的特征值
是两两互异的
那么AB和BA相等
等价于AB可同时对角化
我们说A的特征值两两互异
所以A可对角化
那AB等于BA我们推出来
A的特征向量恒为B的特征向量
因此B也可以对角化
所以这个B也可以对角化
-课前引言
--课前引言
-1.1 引言
--1.1 引言
-1.2 n维向量空间中的点
-1.3 向量
--1.3 向量
-1.4 向量空间的定义
-1.5 向量空间的线性组合
-1.6 向量的点积、长度
-1.7 向量的夹角
-1.8 两个不等式
-第一讲 向量及其运算--1.9 课后作业
-2.1 矩阵与向量的乘积
-2.2 可逆矩阵
--2.2 可逆矩阵
-2.3 线性方程组的行图和列图
-第二讲 矩阵与线性方程组--2.4 课后作业
-3.1 Gauss消元法(上)
-3.1 Gauss消元法(下)
-3.2 消元法的矩阵表示 3.2.1 消去矩阵
-3.2 消元法的矩阵表示 3.2.2 置换阵
-3.2 消元法的矩阵表示 3.2.3 初等行(列)变换和初等矩阵
-第三讲 高斯消元法--3.3 课后作业
-4.1 矩阵
--4.1 矩阵
-4.2 矩阵的加法和数乘
-4.3 矩阵的乘法
-4.4 矩阵的乘法的性质
-4.5 矩阵的方幂
-4.6 关于矩阵乘法的引入
-4.7 分块矩阵
--4.7 分块矩阵
-4.8 矩阵的转置
-第四讲 矩阵的运算--4.9 课后作业
-5.1 可逆矩阵的定义
-5.2 矩阵可逆的性质
-5.3 初等矩阵的逆
-5.4 Gauss-Jordan消元法求A的逆
-5.5 矩阵可逆与主元个数
-5.6 下三角矩阵的逆
-5.7 分块矩阵的消元和逆
-第五讲 矩阵的逆--5.8 课后作业
-6.1 LU分解
--LU分解
-6.2 用LU分解解线性方程组
-6.3 消元法的计算量
--消元法的计算量
-6.4 LU分解的存在性和唯一性
-6.5 对称矩阵的LDL^T分解
-6.6 置换矩阵
--置换矩阵
-6.7 PA=LU分解
--PA=LU分解
-第六讲 LU分解--6.8 课后作业
-7.1 引言
--7.1 引言
-7.2 向量空间和子空间
-7.3 列空间和零空间
-7.4 阶梯形
--7.4 阶梯形
-第七讲 向量空间--7.5 课后作业
-8.1 引言
--8.1 引言
-8.2 基础解系
--8.2 基础解系
-8.3 简化行阶梯形的列变换
-第八讲 求解齐次线性方程组--8.4 课后作业
-9.1 复习
-9.2 求特解
-9.3 解的一般性讨论
-第九讲 求解非齐次线性方程组--9.4 课后作业
-10.1 引言
--引言
-10.2 n维空间的坐标系
-10.3 无关性、基与维数
-10.4 无关性、基与维数的性质
-10.5 关于秩的不等式
-第十讲 线性无关、基与维数--10.6 课后作业
-11.1 四个基本子空间的基
--11.1
-11.2 维数公式
--11.2
-11.3 例题
--11.3
-第十一讲 四个基本子空间的基和维数--11.4 课后作业
-12.1 引言
--12.1
-12.2 四个子空间的正交性
--12.2
-12.3 正交补
--12.3
-12.4 Ax=b在行空间中的唯一性
--12.4
-第十二讲 四个基本子空间的正交关系--12.5 课后作业
-13.1 引言
--13.1 引言
-13.2 点在直线和平面上的投影
-13.3 一般情形
-第十三讲 正交投影--13.4 课后作业
-14.1 复习
--14.1 复习
-14.2 最小二乘法
-14.3 最小二乘法的应用:曲线拟合
-第十四讲 最小二乘法--14.4 课后作业
-15.1 引言
--15.1 引言
-15.2 正交向量组和正交矩阵
-15.3 Gram-Schmidt正交化过程
-15.4 QR分解
-第十五讲 Gram-Schmidt正交化--15.5 课后作业
-16.1 引言
--16.1 引言
-16.2 二阶行列式的几何含义
-16.3 一般行列式的定义
-16.4 行列式和初等变换
-第十六讲 行列式的基本性质--16.5 课后作业
-17.1 行列式计算公式与展开定理
-17.2 典型例题
-第十七讲 行列式的计算--17.3 课后作业
-18.1 引言
--18.1 引言
-18.2.1 求逆矩阵公式
-18.2.2 线性方程组的公式解
-18.3 计算有向长度、面积和体积
-18.4 和QR分解的联系
-第十八讲 Cramer法则及行列式的几何意义--18.5 课后作业
-19.1 引言和定义
--default
-19.2 例
--default
-19.3 特征值的性质
--default
-第十九讲 特征值与特征向量--19.4 课后作业
-20.1 矩阵可对角化的条件
--default
-20.2 特征值的代数重数和几何重数
--default
-20.3 矩阵可对角化的应用
--default
-20.4 同时对角化
--default
-20.5 小结
--default
-第二十讲 矩阵的对角化--20.6 课后作业
-21.1 引言
--21.1 引言
-21.2 A可对角化的情形
-21.3 矩阵的指数函数
-21.4 二阶常系数线性微分方程
-21.5 微分方程的稳定性
-第二十一讲 特征值在微分方程中的应用--21.6 课后作业
-22.1 实对称矩阵的特征值与特征向量
-22.2 实对称阵正交相似于对角阵
-22.3 实对称阵特征值与主元的关系
-22.4 小结
--22.4 小结
-第二十二讲 实对称矩阵--22.5 课后作业
-总结和预告