当前课程知识点:线性代数(1) >  第二十一讲 特征值在微分方程中的应用 >  21.1 引言 >  21.1 引言

返回《线性代数(1)》慕课在线视频课程列表

21.1 引言在线视频

21.1 引言

下一节:21.2 A可对角化的情形

返回《线性代数(1)》慕课在线视频列表

21.1 引言课程教案、知识点、字幕

一个矩阵可以对角化

我们就可以方便地计算它的方幂

从而我们会求解

Uk等于AkU0这类差分方程

这节课我们来看看如何求解

du/dt等于Au这类微分方程

首先我们回顾一下

设矩阵A是可对角化的

也就是说存在可逆矩阵S

使得S逆AS等于lambda为对角阵

那么A就等于SlambdaS逆

于是我们就可以来计算

A的k次幂等于

Slambda的k次幂乘以S逆

对于差分方Uk+1等于AUk

它的解呢

是Uk等于A的k次幂乘以U0

我们代进去A的k次幂

等于Slambda的k次幂乘以S逆

那这时候我们说

我们把S的列向量记成x1 xn

lambda的k次幂是对角元

lambda1的k次幂乘以

一直到lambda n的k次幂

S逆U0 列向量我们是c1 cn

那么Uk就等于c1lambda1的k次幂

乘以x1一直加到

cnlambdan的k次幂xn

其中呢U0等于c1x1+cnxn

或者我们可以看成是

S逆U0等于C

也就是说U0可以写成SC

那S呢是x1 xn

C呢是C1 Cn

这样我们就得到U0

用特征向量x1 xn的线性表示

表示系数是C1 Cn的

这种表示形式

那其中xi是A的关于特征值

lambdai的特征向量

也就是Axi等于lambdaixi

好 这是对于差分方程

那么对于连续版本的方程

也就是微分方程

我们来考虑下面的问题

设关于t的向量值的可导函数

u u(t)

它的分量有u1(t) un(t)

它满足微分方程du/dt等于Au

其中A是一个n阶的常数矩阵

我们来求解

这个向量值的函数u(t)

那么这个可以换成du1/dt

dun/dt等于a11 a1n

a21 a2n an1 ann

u1 u2 un

我们看U是数值函数

那么这个方程就是du/dt

等于Au 其中这个A是一个常数

而我们如果特别的

加一个初始条件U0

当t等于0的时候

等于已知的一个数U0

那么它的解呢

很自然的我们去做积分

就得到这个u(t)是等于

e的at次幂乘以这个常数u0

也就是说它的这个解

是一个指数函数乘以一个常数

进一步的

如果我们的A这个矩阵

是一个对角矩阵

对角线上的元素是lambda1 lambdan

那么我们的方程组du/dt等于Au

就变成这种形式

那它等价于每一个分量

dui/dt等于lambdaiui

这个lambdai是常数

退化成刚才数值情形的方程

那么每一个分量

就是指数函数elambdaitci

其中的ci是常数

那在这种情况下

每一个分量函数的倒数

是仅依赖于该分量自身的

那这类方程组呢

称为是解耦的

那它和数值情形的方程是相同的

那么问题是怎么样来处理

一个一般的矩阵

求解du/dt等于Au呢

线性代数(1)课程列表:

总引言

-课前引言

--课前引言

第一讲 向量及其运算

-1.1 引言

--1.1 引言

-1.2 n维向量空间中的点

--1.2 n维向量空间中的点

-1.3 向量

--1.3 向量

-1.4 向量空间的定义

--1.4 向量空间的定义

-1.5 向量空间的线性组合

--1.5 向量空间的线性组合

-1.6 向量的点积、长度

--1.6 向量的点积、长度

-1.7 向量的夹角

--1.7 向量的夹角

-1.8 两个不等式

--1.8 两个不等式

-第一讲 向量及其运算--1.9 课后作业

-第一章讲义

第二讲 矩阵与线性方程组

-2.1 矩阵与向量的乘积

--2.1 矩阵与向量的乘积

-2.2 可逆矩阵

--2.2 可逆矩阵

-2.3 线性方程组的行图和列图

--2.3 线性方程组的行图和列图

-第二讲 矩阵与线性方程组--2.4 课后作业

-第二章讲义

第三讲 高斯消元法

-3.1 Gauss消元法(上)

--3.1 Gauss消元法(上)

-3.1 Gauss消元法(下)

--3.1 Gauss消元法(下)

-3.2 消元法的矩阵表示 3.2.1 消去矩阵

--3.2 消元法的矩阵表示 3.2.1 消去矩阵

-3.2 消元法的矩阵表示 3.2.2 置换阵

--线性代数03++3.2.2置换阵

-3.2 消元法的矩阵表示 3.2.3 初等行(列)变换和初等矩阵

--线性代数03++3.2.3初等行列变换和初等矩阵

-第三讲 高斯消元法--3.3 课后作业

-第三章讲义

第四讲 矩阵的运算

-4.1 矩阵

--4.1 矩阵

-4.2 矩阵的加法和数乘

--4.2 矩阵的加法和数乘

-4.3 矩阵的乘法

--4.3 矩阵的乘法

-4.4 矩阵的乘法的性质

--4.4 矩阵的乘法的性质

-4.5 矩阵的方幂

--4.5 矩阵的方幂

-4.6 关于矩阵乘法的引入

--4.6 关于矩阵乘法的引入

-4.7 分块矩阵

--4.7 分块矩阵

-4.8 矩阵的转置

--4.8 矩阵的转置

-第四讲 矩阵的运算--4.9 课后作业

-第四章讲义

第五讲 矩阵的逆

-5.1 可逆矩阵的定义

--5.1 可逆矩阵的定义

-5.2 矩阵可逆的性质

--5.2 矩阵可逆的性质

-5.3 初等矩阵的逆

--5.3 初等矩阵的逆

-5.4 Gauss-Jordan消元法求A的逆

--5.4 Gauss-Jordan消元法求A的逆

-5.5 矩阵可逆与主元个数

--5.5 矩阵可逆与主元个数

-5.6 下三角矩阵的逆

--5.6 下三角矩阵的逆

-5.7 分块矩阵的消元和逆

--5.7 分块矩阵的消元和逆

-第五讲 矩阵的逆--5.8 课后作业

-第五章讲义

第六讲 LU分解

-6.1 LU分解

--LU分解

-6.2 用LU分解解线性方程组

--用LU分解解线性方程组

-6.3 消元法的计算量

--消元法的计算量

-6.4 LU分解的存在性和唯一性

--LU分解的存在性和唯一性

-6.5 对称矩阵的LDL^T分解

--对称矩阵的LDL^T分解

-6.6 置换矩阵

--置换矩阵

-6.7 PA=LU分解

--PA=LU分解

-第六讲 LU分解--6.8 课后作业

-第六章讲义

第七讲 向量空间

-7.1 引言

--7.1 引言

-7.2 向量空间和子空间

--7.2 向量空间和子空间

-7.3 列空间和零空间

--7.3 列空间和零空间

-7.4 阶梯形

--7.4 阶梯形

-第七讲 向量空间--7.5 课后作业

-第七章讲义

第八讲 求解齐次线性方程组

-8.1 引言

--8.1 引言

-8.2 基础解系

--8.2 基础解系

-8.3 简化行阶梯形的列变换

--8.3 简化行阶梯形的列变换

-第八讲 求解齐次线性方程组--8.4 课后作业

-第八章讲义

第九讲 求解非齐次线性方程组

-9.1 复习

--9.1 线性代数复习

-9.2 求特解

--9.2 线性代数求特解

-9.3 解的一般性讨论

--9.3 解的一般性讨论

-第九讲 求解非齐次线性方程组--9.4 课后作业

-第九章讲义

第十讲 线性无关、基与维数

-10.1 引言

--引言

-10.2 n维空间的坐标系

--10.2 +n维空间的坐标系

-10.3 无关性、基与维数

--10.3 无关性、基与维数

-10.4 无关性、基与维数的性质

--10.4 无关性、基与维数的性质

-10.5 关于秩的不等式

--10.5 +关于秩的不等式

-第十讲 线性无关、基与维数--10.6 课后作业

-第十章讲义

第十一讲 四个基本子空间的基和维数

-11.1 四个基本子空间的基

--11.1

-11.2 维数公式

--11.2

-11.3 例题

--11.3

-第十一讲 四个基本子空间的基和维数--11.4 课后作业

-第十一章讲义

第十二讲 四个基本子空间的正交关系

-12.1 引言

--12.1

-12.2 四个子空间的正交性

--12.2

-12.3 正交补

--12.3

-12.4 Ax=b在行空间中的唯一性

--12.4

-第十二讲 四个基本子空间的正交关系--12.5 课后作业

-第十二章讲义

第十三讲 正交投影

-13.1 引言

--13.1 引言

-13.2 点在直线和平面上的投影

--13.2 点在直线和平面上的投影

-13.3 一般情形

--13.3 一般情形

-第十三讲 正交投影--13.4 课后作业

-第十三章讲义

第十四讲 最小二乘法

-14.1 复习

--14.1 复习

-14.2 最小二乘法

--14.2 最小二乘法

-14.3 最小二乘法的应用:曲线拟合

--14.3 最小二乘法的应用:曲线拟合

-第十四讲 最小二乘法--14.4 课后作业

-第十四章讲义

第十五讲 Gram-Schmidt正交化

-15.1 引言

--15.1 引言

-15.2 正交向量组和正交矩阵

--15.2 正交向量组和正交矩阵

-15.3 Gram-Schmidt正交化过程

--15.3 Gram-Schmidt正交化过程

-15.4 QR分解

--15.4 QR分解

-第十五讲 Gram-Schmidt正交化--15.5 课后作业

-第十五章讲义

第十六讲 行列式的基本性质

-16.1 引言

--16.1 引言

-16.2 二阶行列式的几何含义

--16.2 二阶行列式的几何含义

-16.3 一般行列式的定义

--16.3 一般行列式的定义

-16.4 行列式和初等变换

--16.4 行列式和初等变换

-第十六讲 行列式的基本性质--16.5 课后作业

-第十六章讲义

第十七讲 行列式的计算

-17.1 行列式计算公式与展开定理

--17.1 行列式计算公式与展开定理

-17.2 典型例题

--17.2 典型例题

-第十七讲 行列式的计算--17.3 课后作业

-第十七章讲义

第十八讲 Cramer法则及行列式的几何意义

-18.1 引言

--18.1 引言

-18.2.1 求逆矩阵公式

--18.2.1 求逆矩阵公式

-18.2.2 线性方程组的公式解

--18.2.2 线性方程组的公式解

-18.3 计算有向长度、面积和体积

--18.3 计算有向长度、面积和体积

-18.4 和QR分解的联系

--18.4 和QR分解的联系

-第十八讲 Cramer法则及行列式的几何意义--18.5 课后作业

-第十八章讲义

第十九讲 特征值与特征向量

-19.1 引言和定义

--default

-19.2 例

--default

-19.3 特征值的性质

--default

-第十九讲 特征值与特征向量--19.4 课后作业

-第十九章讲义

第二十讲 矩阵的对角化

-20.1 矩阵可对角化的条件

--default

-20.2 特征值的代数重数和几何重数

--default

-20.3 矩阵可对角化的应用

--default

-20.4 同时对角化

--default

-20.5 小结

--default

-第二十讲 矩阵的对角化--20.6 课后作业

-第二十章讲义

第二十一讲 特征值在微分方程中的应用

-21.1 引言

--21.1 引言

-21.2 A可对角化的情形

--21.2 A可对角化的情形

-21.3 矩阵的指数函数

--21.3 矩阵的指数函数

-21.4 二阶常系数线性微分方程

--21.4 二阶常系数线性微分方程

-21.5 微分方程的稳定性

--21.5 微分方程的稳定性

-第二十一讲 特征值在微分方程中的应用--21.6 课后作业

-第二十一章讲义

第二十二讲 实对称矩阵

-22.1 实对称矩阵的特征值与特征向量

--22.1 实对称阵的特征值与特征向量

-22.2 实对称阵正交相似于对角阵

--22.2 实对称阵正交相似于对角阵

-22.3 实对称阵特征值与主元的关系

--22.3 实对称阵特征值与主元的关系

-22.4 小结

--22.4 小结

-第二十二讲 实对称矩阵--22.5 课后作业

-第二十二章讲义

结束语

-总结和预告

--13D9C08E4E7858C09C33DC5901307461

21.1 引言笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。