当前课程知识点:线性代数(1) >  第十讲 线性无关、基与维数 >  10.1 引言 >  引言

返回《线性代数(1)》慕课在线视频课程列表

引言在线视频

引言

下一节:10.2 +n维空间的坐标系

返回《线性代数(1)》慕课在线视频列表

引言课程教案、知识点、字幕

大家好 大家可能还记得

我们当初引入向量空间

这个概念的时候呢

我们就说过

我们日常中

有向量空间中一些常识性的

认为直线是一维的

平面是二维的

我们这个问题呢

将在这一讲中确切地来理解

就是说维数的概念

那么为了描述维数呢

我们要引入向量空间的坐标系

向量空间坐标系中坐标轴的个数

将是我们维数的定义

那么这里就产生了一个问题

坐标系中坐标轴的个数

会不会因为坐标系的选择

而发生不同呢

我们将在这一讲中

确切地回答这个问题

那么另一方面

我们也会看到向量空间的概念

向量空间中维数的概念

都和我们通常的几何的直观

是一致的

下面我们来开始

这一讲的主要内容

这一讲来学习关于无关性

基与维数

我们在前言中说过

我们经常说

我们日常的二维空间 三维空间

或者直线是一维的

平面是二维的

我们生活在三维空间里面

那么这些概念呢

我们在这一讲中

把它用确切的数学含义

给它描述出来

我们现在还是从方程组的角度

来看一下

给定一个Ax等于0

A是m乘n阶的矩阵

那么我们来回忆一下

A的列向量中呢

无关向量的个数

或者A的列秩

等于A的行向量中无关向量的个数

或者叫行秩

也就等于真正起作用方程的个数

或者按以前的说法

实际上一个是列的角度来看

一个从行的角度来看

行的角度看

就是方程的个数中的角度来看

第二个是解空间中

无关解向量的个数

等于自由变量的个数

那么这个无关解向量的个数呢

实际上更确切的

就是我们说的基础解系

那么s跟r加起来

就是我们的A的列数

这个直观地理解呢

我们在前面也说过

实际上就是说给定了r个方程

真正起作用的r个方程

然后呢

又给了n个未知量

那么一个方程最多能求出一个解

那么r个方程只能求出r个解

剩下的n-r个呢求不出来

就让它自由变化

所以这就是我们Ax等于0

求解中从直观角度

来理解是这样的

那么当时我们求解过程呢

是通过这种方法

就是先把A进行行变换变成U0

然后通过列变换变成R

那么R虽然跟A

它们齐次方程组的解不一样

但是它们只是变换了一下

未知量的一个次序问题

我们设F等于cij r乘上n-r

则Ry等于0呢

有n-r个无关的解向量

求n个无关解向量

我们只要看这一块就知道

它确实是无关的

所以把它延长的时候还是无关的

那么我们设U0呢

它的i1 ir列行如这个样子

那么第ik列实际上呢

就是1放在第k分量上这样子

但是U0呢

它这些列是分散开的

R是把它通过列交换放在一起了

所以呢我们最后

P1i1 P2i2就是U0到R的

一个列对换

这个就是把第一列和i1列换一下

使得U0的第i1列

移到了第一列

按这种对换呢

最后就变成R那种形状了

然后将eta1到eta r的i1到ir分量

eta1到eta r

就是刚才我们R中的

r个无关的向量

把这个分量次序变一下

这样我们就得到了r个向量

这r个向量

就是我们的Ax等于0的基础解系

这是我们前面学过的

那在这节课呢

我们确切地来理解

这个基础解系这个的含义

这个含义的就是

直观地说

实际上就是Ax等于0

解向量空间的坐标系

这是我们直观理解

好 我们现在一般的

来刻划一下这个概念

线性代数(1)课程列表:

总引言

-课前引言

--课前引言

第一讲 向量及其运算

-1.1 引言

--1.1 引言

-1.2 n维向量空间中的点

--1.2 n维向量空间中的点

-1.3 向量

--1.3 向量

-1.4 向量空间的定义

--1.4 向量空间的定义

-1.5 向量空间的线性组合

--1.5 向量空间的线性组合

-1.6 向量的点积、长度

--1.6 向量的点积、长度

-1.7 向量的夹角

--1.7 向量的夹角

-1.8 两个不等式

--1.8 两个不等式

-第一讲 向量及其运算--1.9 课后作业

-第一章讲义

第二讲 矩阵与线性方程组

-2.1 矩阵与向量的乘积

--2.1 矩阵与向量的乘积

-2.2 可逆矩阵

--2.2 可逆矩阵

-2.3 线性方程组的行图和列图

--2.3 线性方程组的行图和列图

-第二讲 矩阵与线性方程组--2.4 课后作业

-第二章讲义

第三讲 高斯消元法

-3.1 Gauss消元法(上)

--3.1 Gauss消元法(上)

-3.1 Gauss消元法(下)

--3.1 Gauss消元法(下)

-3.2 消元法的矩阵表示 3.2.1 消去矩阵

--3.2 消元法的矩阵表示 3.2.1 消去矩阵

-3.2 消元法的矩阵表示 3.2.2 置换阵

--线性代数03++3.2.2置换阵

-3.2 消元法的矩阵表示 3.2.3 初等行(列)变换和初等矩阵

--线性代数03++3.2.3初等行列变换和初等矩阵

-第三讲 高斯消元法--3.3 课后作业

-第三章讲义

第四讲 矩阵的运算

-4.1 矩阵

--4.1 矩阵

-4.2 矩阵的加法和数乘

--4.2 矩阵的加法和数乘

-4.3 矩阵的乘法

--4.3 矩阵的乘法

-4.4 矩阵的乘法的性质

--4.4 矩阵的乘法的性质

-4.5 矩阵的方幂

--4.5 矩阵的方幂

-4.6 关于矩阵乘法的引入

--4.6 关于矩阵乘法的引入

-4.7 分块矩阵

--4.7 分块矩阵

-4.8 矩阵的转置

--4.8 矩阵的转置

-第四讲 矩阵的运算--4.9 课后作业

-第四章讲义

第五讲 矩阵的逆

-5.1 可逆矩阵的定义

--5.1 可逆矩阵的定义

-5.2 矩阵可逆的性质

--5.2 矩阵可逆的性质

-5.3 初等矩阵的逆

--5.3 初等矩阵的逆

-5.4 Gauss-Jordan消元法求A的逆

--5.4 Gauss-Jordan消元法求A的逆

-5.5 矩阵可逆与主元个数

--5.5 矩阵可逆与主元个数

-5.6 下三角矩阵的逆

--5.6 下三角矩阵的逆

-5.7 分块矩阵的消元和逆

--5.7 分块矩阵的消元和逆

-第五讲 矩阵的逆--5.8 课后作业

-第五章讲义

第六讲 LU分解

-6.1 LU分解

--LU分解

-6.2 用LU分解解线性方程组

--用LU分解解线性方程组

-6.3 消元法的计算量

--消元法的计算量

-6.4 LU分解的存在性和唯一性

--LU分解的存在性和唯一性

-6.5 对称矩阵的LDL^T分解

--对称矩阵的LDL^T分解

-6.6 置换矩阵

--置换矩阵

-6.7 PA=LU分解

--PA=LU分解

-第六讲 LU分解--6.8 课后作业

-第六章讲义

第七讲 向量空间

-7.1 引言

--7.1 引言

-7.2 向量空间和子空间

--7.2 向量空间和子空间

-7.3 列空间和零空间

--7.3 列空间和零空间

-7.4 阶梯形

--7.4 阶梯形

-第七讲 向量空间--7.5 课后作业

-第七章讲义

第八讲 求解齐次线性方程组

-8.1 引言

--8.1 引言

-8.2 基础解系

--8.2 基础解系

-8.3 简化行阶梯形的列变换

--8.3 简化行阶梯形的列变换

-第八讲 求解齐次线性方程组--8.4 课后作业

-第八章讲义

第九讲 求解非齐次线性方程组

-9.1 复习

--9.1 线性代数复习

-9.2 求特解

--9.2 线性代数求特解

-9.3 解的一般性讨论

--9.3 解的一般性讨论

-第九讲 求解非齐次线性方程组--9.4 课后作业

-第九章讲义

第十讲 线性无关、基与维数

-10.1 引言

--引言

-10.2 n维空间的坐标系

--10.2 +n维空间的坐标系

-10.3 无关性、基与维数

--10.3 无关性、基与维数

-10.4 无关性、基与维数的性质

--10.4 无关性、基与维数的性质

-10.5 关于秩的不等式

--10.5 +关于秩的不等式

-第十讲 线性无关、基与维数--10.6 课后作业

-第十章讲义

第十一讲 四个基本子空间的基和维数

-11.1 四个基本子空间的基

--11.1

-11.2 维数公式

--11.2

-11.3 例题

--11.3

-第十一讲 四个基本子空间的基和维数--11.4 课后作业

-第十一章讲义

第十二讲 四个基本子空间的正交关系

-12.1 引言

--12.1

-12.2 四个子空间的正交性

--12.2

-12.3 正交补

--12.3

-12.4 Ax=b在行空间中的唯一性

--12.4

-第十二讲 四个基本子空间的正交关系--12.5 课后作业

-第十二章讲义

第十三讲 正交投影

-13.1 引言

--13.1 引言

-13.2 点在直线和平面上的投影

--13.2 点在直线和平面上的投影

-13.3 一般情形

--13.3 一般情形

-第十三讲 正交投影--13.4 课后作业

-第十三章讲义

第十四讲 最小二乘法

-14.1 复习

--14.1 复习

-14.2 最小二乘法

--14.2 最小二乘法

-14.3 最小二乘法的应用:曲线拟合

--14.3 最小二乘法的应用:曲线拟合

-第十四讲 最小二乘法--14.4 课后作业

-第十四章讲义

第十五讲 Gram-Schmidt正交化

-15.1 引言

--15.1 引言

-15.2 正交向量组和正交矩阵

--15.2 正交向量组和正交矩阵

-15.3 Gram-Schmidt正交化过程

--15.3 Gram-Schmidt正交化过程

-15.4 QR分解

--15.4 QR分解

-第十五讲 Gram-Schmidt正交化--15.5 课后作业

-第十五章讲义

第十六讲 行列式的基本性质

-16.1 引言

--16.1 引言

-16.2 二阶行列式的几何含义

--16.2 二阶行列式的几何含义

-16.3 一般行列式的定义

--16.3 一般行列式的定义

-16.4 行列式和初等变换

--16.4 行列式和初等变换

-第十六讲 行列式的基本性质--16.5 课后作业

-第十六章讲义

第十七讲 行列式的计算

-17.1 行列式计算公式与展开定理

--17.1 行列式计算公式与展开定理

-17.2 典型例题

--17.2 典型例题

-第十七讲 行列式的计算--17.3 课后作业

-第十七章讲义

第十八讲 Cramer法则及行列式的几何意义

-18.1 引言

--18.1 引言

-18.2.1 求逆矩阵公式

--18.2.1 求逆矩阵公式

-18.2.2 线性方程组的公式解

--18.2.2 线性方程组的公式解

-18.3 计算有向长度、面积和体积

--18.3 计算有向长度、面积和体积

-18.4 和QR分解的联系

--18.4 和QR分解的联系

-第十八讲 Cramer法则及行列式的几何意义--18.5 课后作业

-第十八章讲义

第十九讲 特征值与特征向量

-19.1 引言和定义

--default

-19.2 例

--default

-19.3 特征值的性质

--default

-第十九讲 特征值与特征向量--19.4 课后作业

-第十九章讲义

第二十讲 矩阵的对角化

-20.1 矩阵可对角化的条件

--default

-20.2 特征值的代数重数和几何重数

--default

-20.3 矩阵可对角化的应用

--default

-20.4 同时对角化

--default

-20.5 小结

--default

-第二十讲 矩阵的对角化--20.6 课后作业

-第二十章讲义

第二十一讲 特征值在微分方程中的应用

-21.1 引言

--21.1 引言

-21.2 A可对角化的情形

--21.2 A可对角化的情形

-21.3 矩阵的指数函数

--21.3 矩阵的指数函数

-21.4 二阶常系数线性微分方程

--21.4 二阶常系数线性微分方程

-21.5 微分方程的稳定性

--21.5 微分方程的稳定性

-第二十一讲 特征值在微分方程中的应用--21.6 课后作业

-第二十一章讲义

第二十二讲 实对称矩阵

-22.1 实对称矩阵的特征值与特征向量

--22.1 实对称阵的特征值与特征向量

-22.2 实对称阵正交相似于对角阵

--22.2 实对称阵正交相似于对角阵

-22.3 实对称阵特征值与主元的关系

--22.3 实对称阵特征值与主元的关系

-22.4 小结

--22.4 小结

-第二十二讲 实对称矩阵--22.5 课后作业

-第二十二章讲义

结束语

-总结和预告

--13D9C08E4E7858C09C33DC5901307461

引言笔记与讨论

也许你还感兴趣的课程:

© 柠檬大学-慕课导航 课程版权归原始院校所有,
本网站仅通过互联网进行慕课课程索引,不提供在线课程学习和视频,请同学们点击报名到课程提供网站进行学习。