当前课程知识点:光学 > Chapter 1 General Property of Wave(波的一般性质) > 1.3 Harmonic Wave 简谐波 > 1.3 Harmonic Wave
前面的话我们讨论了
波动方程以及波动方程通解的形式
今天开始的话
我们给出波动方程最重要的一类解的形式
这一类解的形式是用一种特殊的函数
当然很简单的一个函数
是cos sin这种三角函数来表示
对于这样子的函数来表示出来的波动形式
我们有一个名称
叫做Harmoic wave
换句话说叫简谐波
我们今天从Harmoic wave开始讲起
我们说了Harmoic wave
是三角函数
那么波函数的形式
一维的波函数的形式
三角函数我选择的是cos
那么它应该是x-vt的一个函数
当然更一般化来讲的话
我前面可以乘上一个常数叫k
当然它还可以加上一个常数叫ε0
当然前面的话还可以有一个系数a
所以这个是我们能够想出来的
用三角函数
来表示波函数的最一般的形式
当然也可以用sin来表示
sin和cos之间它只不过
是在这个初始的位相因子上
差一个π/2而已
因此的话我们用cos这个形式
来表示Harmoic wave
所以Harmoic wave很简单
就是cos的函数
当然在这里面的话
因为它是周期性函数的话
我们会得到一些重要的关系式
一个我还可以把它写成
我们通常写的形式
展开一下
我写成kx-ωt+ε0
其中ω按照我们的形式来讲的话
就应该等于k乘上v
也就是说或者说
v可以表示成为ω和k的比值
那么k的物理含义是什么
k的物理含义是跟x的周期性
关联在一起的
当x每变△x的时候
如果k△x等于2π我们知道
这个函数的数值是不变的
所以k△x如果等于2π
这个函数值是不变的
在这个时候的话
我们的这个△x
我们有一个名称
这叫空间的周期性
换句话说空间的周期我们称之为波长
叫做λ
因此k就等于2π/λ
速度和频率k的关系
k我们给它也起一个名字
在这里面的话
它正式的名称叫做wave vector
但在一维中
它只是一个数值的大小
等于2π/λ
在三维中k
将会代表波传播的一个方向
同样的道理ω是和时间联系在一起的
ω代表了时间上的一个频率
换句话说如果ω乘上△t如果等于2π的话
那么这个函数值是不变的
在这个时候的话△t
我们称之为period周期
那么也就是说
ω是等于2π/t
也称之为角频率
1/T也称之为频率
1/T等于ν也叫频率我们通常管它叫
一秒钟转了多少圈圈
那么ω是2π乘上这个频率
它称之为角频率
换句话说一秒钟转了多少角度
这些都是关于简谐波的一些最重要的参数
以及它们之间的关系
在这里面我们引入了波长
波矢量
周期
频率
以及角频率
更好的办法是把它画出来
一目了然
当然
画这样一个随时间随空间变化的波不容易
通常我们在作图的时候
采取这样的一个方式 这是ψ
我把时间确定
比如说t=0
就在t=0的时刻
我们把这样的一个波给画出来
相当于我对这个波
拍了张照片
cos的一个函数
这样子的两个点
它们的位相一样
当然在这种情况下它们的位相
只是因为空间的变化引起来的
因此这一段的长度
我就称之为一个波长
这是空间的周期
是这样表示出来的
那么同样的道理
时间上的变化也是
我固定空间上一个点
就好比一个人站在这里感受波的震动
那么这个时候的话我要
fix x比如说x=0
那么在这种情况下的话
它也是cos的一个函数
那么在时间上的这段周期
这是t这是ψ
时间上的这段周期
我们称之为T period
这个就是λ和T
它的最直观的一个含义
这节的话我们介绍了
什么叫做简谐波
也就是cos的函数
由此我来定义了一些
作为简谐波来讲
最重要的参量
频率 周期 角频率 波矢量等等
以及波的速度
速度这部分我们下节课
还没完全讲到
下节会详细的讨论
但这里的话我要提出一个问题是
为什么尽管波的函数
可以是任意的F(x-vt)或者F(x+vt)
但是我们这里面
只给出了一个最简单的
这样子的一个Harmoic wave的cos
或者sin的形式来表示波
那么要问的问题是
对于其他的波
我用这样子的Harmoic wave能够胜任吗
这个的结论是可以的
因为以后的话
我们要学到一个数学上的工具
叫做傅里叶变换
对于其他的波函数的形式
我们都可以把它分解成为
不同频率不同波长的简谐波的叠加
因此我们转而研究简谐波
知道了它的性质
那么再利用傅里叶变换
对于其他复杂的波形的话
我们也可以进行处理了
当然这一部分内容
是要在后续的课程中才涉及到的
今天我来对这个问题做的回答是
Harmoic wave非常重要
它的重要就是它可以作为一种basic block
就像一个最基础的砖头一样
对于其他复杂波的形状
都可以由不同的Harmoic wave
我来给它构造出来
所以这就是为什么我们着重
讨论Harmoic wave的原因
-1.0 History of Optics 光学的历史发展
-1.1 Why Classical Wave Theory is Correct 经典理论为何正确
--1.1 Why Classical Wave Theory is Correct
-1.2 Wave and Wave Equation 波和波动方程
-1.3 Harmonic Wave 简谐波
-1.4 Phase Velocity and Phase Difference 相速度与相位差
--1.4 Phase Velocity and Phase Difference
-1.5 Superposition Principle 叠加原理
--1.5.1 Superposition Principle Part I
--1.5.2.Superposition Principle Part II
-1.6 Example of Superposition and Reciprocal Relation 叠加例子与反比关系
--1.6 Example of Superposition and Reciprocal Relation
-1.7 Euler Formula and Phasor 波的复数表达和旋转矢量表示
--1.7 Euler Formula and Phasor
-1.8 Doppler Effect 多普勒效应
--1.8.2 Doppler Effect Part II
-1.9 Doppler Broadening 多普勒展宽
-1.10 Plane Wave and Spherical Wave 平面波与球面波
--1.10 Plane Wave and Spherical Wave
-第一章习题
--习题
-2.1 Maxwell Equations(Maxwell 方程组)
-2.2 Wave Equation for E-M Field(电磁场的波动方程)
--2.2 Wave Equation for E-M Field
-2.3.1 Index of Refraction(折射率)
-2.3.2 Understanding n from Dipoles(用偶极模型理解折射率)
--2.3.2 Understanding n from Dipoles
-2.4 E-M Wave is Transverse(电磁波是横波)
-2.5 Energy Flow of E-M Wave(电磁波的能流)
-2.6 Momentum and photo-Pressure(动量和光压)
--2.6 Momentum and photo-Pressure
-2.7.1 Dipole Oscillator 1(偶极振子1)
-2.7.2 Dipole Oscillator 2(偶极振子2)
-2.8 Radiation by Dipole Oscillator(偶极振子的辐射)
--2.8 Radiation by Dipole Oscillator
-第二章习题
--习题
-3.1 Reflection and Refraction (反射与折射)
--3.1 Reflection and Refraction
-3.2 Huygens Principle(惠更斯原理)
-3.3.1 Fermat Principle part1: Optical Path Length (费马原理第一部分:光程)
--3.3.1 Fermat Principle part1: Optical Path Length
-3.3.2 Fermat Principle part2: an Explanation (费马原理第二部分:一种解释)
--3.3.2 Fermat Principle part2: an Explanation
-3.4.1 Scattering Point of View 1 (散射图像1)
--3.4.1 Scattering Point of View 1
-3.4.2 Scattering Point of View 2 (散射图像2)
--3.4.2 Scattering Point of View 2
-3.5 Reflection and Refraction Rules Derived from Boundary Conditions of Maxwell Equations(利用Maxwell方
--3.5 Reflection and Refraction Rules Derived from Boundary Conditions of Maxwell Equations
-3.6.1 The Basic problem and Setup of Coordinates (基本问题和坐标系的建立)
--3.6.1 The Basic problem and Setup of Coordinates
-3.6.2 The Reflection and Transmission Coefficients (发射与透射系数)
--3.6.2 The Reflection and Transmission Coefficients
-3.6.3 Discussion on Amplitude of the Coefficients (对系数大小的讨论)
--3.6.3 Discussion on Amplitude of the Coefficients
-3.6.4 Discussion on Phase of the Coefficients (对系数位相的讨论)
--3.6.4 Discussion on Phase of the Coefficients
-3.7 Stokes Relation and Half Wavelength Difference (Stokes关系式和半波损)
--3.7 Stokes Relation and Half Wavelength Difference
-第三章习题
--习题
-4.1 Introduction(几何光学介绍)
-4.2 Important Jargons(重要的术语)
-4.3.1 Image formation by Spherical Surface and Paraxial Approxiamation(球面成像和傍轴近似)
--4.3.1 Image formation by Spherical Surface and Paraxial Approxiamation
-4.3.2 Image Formation Formula(成像公式)
--4.3.2 Image Formation Formula
-4.3.3 Example and Transverse Magnification(例题和横向放大率)
--4.3.3 Example and Transverse Magnification
-4.4 Thin Lens(薄透镜)
-4.5 Thick Lens(厚透镜)
-4.6.1 Matrix Treatment 1: Matrix for Propagation and Refraction(矩阵处理1:表示传播与折射的矩阵)
--4.6.1 Matrix Treatment 1: Matrix for Propagation and Refraction
-4.6.2 Matrix Treatment 2: Lens Matrix(矩阵处理2:透镜矩阵)
--4.6.2 Matrix Treatment 2: Lens Matrix
-4.6.3 Matrix Treatment 3: Relations between Matrix Elements and Cardinal Points(矩阵处理3:矩阵元与主点的联系)
--4.6.3 Matrix Treatment 3: Relations between Matrix Elements and Cardinal Points
-第四章习题
--习题
-5.0 What is Interference(什么是干涉)
-5.1.1 Superposition of Waves: General Case(波叠加的通式)
--5.1.1 Superposition of Waves: General Case
-5.1.2 Adding Wave with Same Frequency and Direction(同频同向波的叠加)
--5.1.2 Adding Wave with Same Frequency and Direction
-5.1.3.1 Standing Wave 1 (驻波(上))
-5.1.3.2 Standing Wave 2 (驻波(下))
-5.1.4.1 Adding Waves with Different Frequencies 1: Beat and Group Velocity(不同频率波的叠加(上):拍和群速度)
--5.1.4.1 Adding Waves with Different Frequencies 1: Beat and Group Velocity
-5.1.4.2 Adding Waves with Different Frequencies 2: Continuous Frequency Spectrum(不同频率波的叠加(中):连续的频谱)
--5.1.4.2 Adding Waves with Different Frequencies 2: Continuous Frequency Spectrum
-5.1.4.3 Adding Waves with Different Frequencies 3: property of Wave Packet and Reciprocal Relation(不
--5.1.4.3 Adding Waves with Different Frequencies 3: property of Wave Packet and Reciprocal Relation
-5.2.1 Interference of Two Point Sources and Coherent Condition(两个点源的干涉和相干条件)
--5.2.1 Interference of Two Point Sources and Coherent Condition
-5.2.2 Young's Double-Slits Experiment(杨氏双缝干涉实验)
--5.2.2 Young's Double-Slits Experiment
-5.2.3 Another Treatment of Young's Interference, Paraxial and Far-field Condition(杨氏干涉的另一种处理,傍轴和远场条
--5.2.3 Another Treatment of Young's Interference, Paraxial and Far-field Condition
-Chapter 5 Interference and Coherence(Part 1)--第五章习
-5.3.0 Interference by Thin Film(薄膜干涉)
--5.3.0 Interference by Thin Film
-5.3.1 Equal Thickness Fringe(等厚干涉条纹)
--5.3.1 Equal Thickness Fringe
-5.3.2 Equal Inclination Fringe(等倾干涉条纹)
--5.3.2 Equal inclination Fringe
-5.3.3 Michelson Interferometer(Michelson干涉仪)
--5.3.3 Michelson Interferometer
-5.4.0 Multibeam Interference(多光束干涉)
--5.4.0 Multibeam Interference
-5.4.1.1 Derivation 1(理论推导(上))
-5.4.1.2 Derivation 2(理论推导(下))
-5.4.2.1 Discussion(结论与讨论)
-5.4.2.2 Application: F-P Interferometer(应用:F-P 干涉仪)
--5.4.2.2 Application: F-P Interferometer
-5.5.0 Coherence Theory(相干理论)
-5.5.1 Spatial Coherence(空间相干性)
-5.5.2.1 Temporal Coherence(时间相干性)
-5.5.2.2 Coherent Time and Length(相干时间和相干长度)
--5.5.2.2 Coherent Time and Length
-5.5.3.1 Definition of Correlation Function(关联函数定义)
--5.5.3.1 Definition of Correlation Function
-5.5.3.2 Correlation Function and Coherence(关联函数与相干)
--5.5.3.2 Correlation Function and Coherence
-第五章习题(下)
--习题
-6.1 basic problem in diffraction(衍射的基本问题)
--6.1 basic problem in diffraction
-6.2.1 Huygens-Fresnel Principle and Kirchhoff Euation(惠更斯-菲涅耳原理和基尔霍夫方程)
--6.2.1 Huygens-Fresnel Principle and Kirchhoff Euation
-6.2.2 Fresnel and Fraunhoffer Diffraction(菲涅耳与夫琅和费衍射)
--6.2.2 Fresnel and Fraunhoffer Diffraction
-6.3.1 Fresnel Diffraction 1: Half Wavelength Plate(菲涅耳衍射1:半波带法)
--6.3.1 Fresnel Diffraction 1: Half Wavelength Plate
-6.3.2 Fresnel Diffraction 2: Phasor Method(菲涅耳衍射2:旋转矢量法)
--6.3.2 Fresnel Diffraction 2: Phasor Method
-6.3.3 Fresnel Diffraction 3: Opaque Disk and Babinet Principle(菲涅耳衍射3:圆屏衍射和Babinet原理)
--6.3.3 Fresnel Diffraction 3: Opaque Disk and Babinet Principle
-6.3.4 Fresnel Diffraction 4: Fresnel Zone Plate(an application)(菲涅耳衍射4:菲涅耳波带片(一个应用))
--6.3.4 Fresnel Diffraction 4: Fresnel Zone Plate(an application)
-6.4.0 Fraunhoffer Diffraction: General Expression(夫琅和费衍射1:普遍表达形式)
--6.4.0 6.4.0 Fraunhoffer Diffraction: General Expression
-6.4.1.1 Single Slit Fraunhoffer Diffraction(单缝夫琅和费衍射)
--6.4.1.1 Single Slit Fraunhoffer Diffraction
-6.4.1.2 Characteristic of Single Slit Case(单缝衍射的特点)
--6.4.1.2 Characteristic of Single Slit Case
-6.4.2 Fraunhoffer Diffraction for Rectangular Window(矩形窗口的夫琅和费衍射)
--6.4.2 Fraunhoffer Diffraction for Rectangular Window
-6.4.3.1 Fraunhoffer Diffraction for Circular Aperture(圆孔的夫琅和费衍射)
--6.4.3.1 Fraunhoffer Diffraction for Circular Aperture
-6.4.3.2 Diffraction Limit on Resolution(分辨率的衍射极限)
--6.4.3.2 Diffraction Limit on Resolution
-第六章习题(上)
--习题
-6.5.1 Fraunhoffer Diffraction for 2-slits Case(双缝夫琅和费衍射)
--6.5.1 Fraunhoffer Diffraction for 2-slits Case
-6.5.2.1 Multi-slits Dffraction 1: Intensity distribution(多缝衍射1:光强分布)
--6.5.2.1 Multi-slits Dffraction 1: Intensity distribution
-6.5.2.2 Multi-slits Diffraction 2: Interference between Slits and Principal maxima(多缝衍射2:缝间干涉和主极大)
--6.5.2.2 Multi-slits Diffraction 2: Interference between Slits and Principal maxima
-6.5.2.3 Multi-slits Diffraction 3: Missing Order and Examples(多缝衍射3:缺级与例题)
--6.5.2.3 Multi-slits Diffraction 3: Missing Order and Examples
-6.5.3.1 Grating Spectrometer(光栅光谱仪)
--6.5.3.1 Grating Spectrometer
-6.5.3.2 Dispersion Relation of Grating Spectrometer(光栅光谱仪的色散关系)
--6.5.3.2 Dispersion Relation of Grating Spectrometer
-6.5.3.3 Dispersion Power and Resolution(色散能力和分辨率)
--6.5.3.3 Dispersion Power and Resolution
-6.5.3.4 Free Spectral Range(自由光谱程)
-第六章习题(下)
--习题
-7.0 introducing Fourier expansion and transform(介绍傅里叶展开与变换)
--7.0
-7.1.1 Fourier transform for periodic functions(周期函数的傅里叶展开)
--7.1.1
-7.1.2 examples on Fourier expansion(傅里叶展开的例子)
--7.1.2
-7.2.1 Fourier transform for general functions(一般函数的傅里叶变换)
--7.2.1
-7.2.2 Fourier transforms of some typical functions and relation on width distribution(一些典型函数的傅里叶变换和分
--7.2.2
-7.3.1 Dirac delta function(狄拉克delta函数)
-7.3.2 Fourier transform of the delta function(delta函数的傅里叶变换)
--7.3.2
-7.4.1 properties of Fourier transform(傅里叶变换的性质)
--7.4.1
-7.4.2 Fourier transform of derivatives(函数导数的傅里叶变换)
--7.4.2
-7.4.3 what is convolution between functions(函数的卷积是什么)
--7.4.3
-7.4.4 Fourier transform of convolution(卷积的傅里叶变换)
--7.4.4
-7.5 relation between fourier transform and Fraunhoffer equation(傅里叶变换与夫琅禾费衍射之间的关系)
--7.5
-7.6 Abbe image formation(阿贝成像原理)
--7.6
-Chapter 7--第七章习题
-8.1 what is polarization(什么是偏振)
--8.1
-8.2.1 how to express polarization state(如何表达偏振态)
--8.2.1
-8.2.2 unpolarized and partial polarized light(非偏振态和部分偏振态)
--8.2.2
-8.3 linear polarizer(线偏振片)
--8.3
-8.4.1.1 Jones vector(Jones 矢量)
--8.4.1.1
-8.4.1.2 Transformation of Jones Vector(Jones 矢量的变换)
--8.4.1.2
-8.4.2 Jones matrix(Jones 矩阵)
--8.4.2
-第八章(上)习题
--习题
-8.5.1 Birefringence and a simple illustration
--8.5.1 Birefringence and a simple illustration
-8.5.2 Ordinary and Extraordinary light
--8.5.2
-8.5.3 Typical Examples
--8.5.3
-8.6.1 application 1-linear polarizer
--8.6.1
-8.6.2.1 application 2-quarter wave plate
--8.6.2.1
-8.6.2.2 application 2-change polarization state by quarter wave-plate
--8.6.2.2
-8.6.2.3 application2-change direction of polarization by half-plate
--8.6.2.3
-8.7.1
--8.7.1
-8.7.2
--8.7.2
-8.7.3
--8.7.3
-8.7.4
--8.7.4
-8.8.1
--8.8.1
-8.8.2
--8.8.2
-8.8.3
--8.8.3
-第八章(下)习题
--习题
-期末测试
--期末测试